Skip to main content
Log in

Trends of regional precipitation and their control mechanisms during 1979–2013

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Trends in precipitation are critical to water resources. Considerable uncertainty remains concerning the trends of regional precipitation in response to global warming and their controlling mechanisms. Here, we use an interannual difference method to derive trends of regional precipitation from GPCP (Global Precipitation Climatology Project) data and MERRA (Modern- Era Retrospective Analysis for Research and Applications) reanalysis in the near-global domain of 60°S–60°N during a major global warming period of 1979–2013. We find that trends of regional annual precipitation are primarily driven by changes in the top 30% heavy precipitation events, which in turn are controlled by changes in precipitable water in response to global warming, i.e., by thermodynamic processes. Significant drying trends are found in most parts of the U.S. and eastern Canada, the Middle East, and eastern South America, while significant increases in precipitation occur in northern Australia, southern Africa, western India and western China. In addition, as the climate warms there are extensive enhancements and expansions of the three major tropical precipitation centers–the Maritime Continent, Central America, and tropical Africa–leading to the observed widening of Hadley cells and a significant strengthening of the global hydrological cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, R. F., G. J. Gu, J. J. Wang, G. J. Huffman, S. Curtis, and D. Bolvin, 2008: Relationships between global precipitation and surface temperature on interannual and longer timescales (1979–2006). J. Geophys. Res., 113, D22104, doi: 10.1029/2008jd010536.

    Article  Google Scholar 

  • Adler, R. F., and Coauthors, 2003: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). Journal of Hydrometeorology, 4, 1147–1167, doi: 10.1175/1525-7541(2003)004<1147:Tvgpcp>2.0.Co;2.

    Article  Google Scholar 

  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224–232, doi: 10.1038/nature01092.

    Article  Google Scholar 

  • Chadwick, R., I. Boutle, and G. Martin, 2013: Spatial patterns of precipitation change in CMIP5: Why the rich do not get richer in the tropics. J. Climate, 26, 3803–3822, doi: 10.1175/jcli-d-12-00543.1.

    Article  Google Scholar 

  • Chou, C., J. C. H. Chiang, C. W. Lan, C. H. Chung, Y. C. Liao, and C. J. Lee, 2013: Increase in the range between wet and dry season precipitation. Nature Geoscience, 6, 263–267, doi: 10.1038/ngeo1744.

    Article  Google Scholar 

  • Cubasch, U., and Coauthors, 2001: Projections of future climate change. Chapter 9, Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, J. T. Houghton et al., Eds., Cambridge University Press, 524–582.

    Google Scholar 

  • Dai, A. G., J. H. Wang, P. W. Thorne, D. E. Parker, L. Haimberger, and X. L. Wang, 2011: A new approach to homogenize daily radiosonde humidity data. J. Climate, 24, 965–991, doi: 10.1175/2010jcli3816.1.

    Article  Google Scholar 

  • Davis, S. M., and K. H. Rosenlof, 2012: A multidiagnostic intercomparison of tropical-width time series using reanalyses and satellite observations. J. Climate, 25, 1061–1078, doi: 10.1175/jcli-d-11-00127.1.

    Article  Google Scholar 

  • Dessler, A. E., and S. M. Davis, 2010: Trends in tropospheric humidity from reanalysis systems. J. Geophys. Res., 115, D19127, doi: 10.1029/2010jd014192.

  • Durre, I., C. N. Williams Jr., X. G. Yin, and R. S. Vose, 2009: Radiosonde-based trends in precipitable water over the Northern Hemisphere: An update. J. Geophys. Res., 114, D05112, doi: 10.1029/2008jd010989.

    Google Scholar 

  • Hartmann, D. L., and Coauthors, 2013: Observations: Atmosphere and surface. Chapter 2, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, 159–254.

    Google Scholar 

  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 5686–5699, doi: 10.1175/jcli3990.1.

    Article  Google Scholar 

  • Hu, Y., and Q. Fu, 2007: Observed poleward expansion of the Hadley circulation since 1979. Atmospheric Chemistry and Physics, 7, 5229–5236, doi: 10.5194/acp-7-5229-2007.

    Article  Google Scholar 

  • Jones, P. D., and A. Moberg, 2003: Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001. J. Climate., 16, 206–223, doi: 10.1175/1520-0442(2003)016<0206:HALSSA>2.0.CO;2.

    Article  Google Scholar 

  • Lau, K. M., and H. T. Wu, 2011: Climatology and changes in tropical oceanic rainfall characteristics inferred from Tropical Rainfall Measuring Mission (TRMM) data (1998–2009). J. Geophys. Res., 116, D17111, doi: 10.1029/2011jd015827.

    Article  Google Scholar 

  • Liu, C. L., and R. P. Allan, 2013: Observed and simulated precipitation responses in wet and dry regions 1850–2100. Environmental Research Letters, 8, doi: 10.1088/1748-9326/8/3/034002.

    Google Scholar 

  • Liu, S. C., C. B. Fu, C. J. Shiu, J. P. Chen, and F. T. Wu, 2009: Temperature dependence of global precipitation extremes. Geophys. Res. Lett., 36, L17702, doi: 10.1029/2009gl040218.

    Article  Google Scholar 

  • Mitchell, J. F. B., C. A. Wilson, and W. M. Cunnington, 1987: On CO2 climate sensitivity and model dependence of results. Quart. J. Roy. Meteor. Soc., 113, 293–322, doi: 10.1002/qj.49711347517.

    Article  Google Scholar 

  • Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol., 25, 693–712, doi: 10.1002/joc.1181.

    Article  Google Scholar 

  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Climate, 24, 3624–3648, doi: 10.1175/Jcli-D-11-00015.1.

    Article  Google Scholar 

  • Santer, B. D., and Coauthors, 2007: Identification of humaninduced changes in atmospheric moisture content. Proc. Natl. Acad. Sci. USA, 104, 15248–15253, doi: 10.1073/pnas.0702872104.

    Article  Google Scholar 

  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 15–40, doi: 10.1007/s00704-013-0860-x.

    Article  Google Scholar 

  • Seager, R., and Coauthors, 2007: Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316, 1181–1184, doi: 10.1126/science.1139601.

    Article  Google Scholar 

  • Shiu, C. J., S. C. Liu, C. B. Fu, A. G. Dai, and Y. Sun, 2012: How much do precipitation extremes change in a warming climate? Geophys. Res. Lett., 39, L17707, doi: 10.1029/2012gl052762.

    Article  Google Scholar 

  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296, doi: 10.1175/2007jcli2100.1.

    Article  Google Scholar 

  • Stachnik, J. P., and C. Schumacher, 2011: A comparison of the Hadley circulation in modern reanalyses. J. Geophys. Res., 116, D22102, doi: 10.1029/2011jd016677.

  • Sun, Y., S. Solomon, A. G. Dai, and R. W. Portmann, 2007: How often will it rain? J. Climate, 20, 4801–4818, doi: 10.1175/jcli4263.1.

    Article  Google Scholar 

  • Tokinaga, H., S. P. Xie, C. Deser, Y. Kosaka, and Y. M. Okumura, 2012: Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature, 491, 439–444, doi: 10.1038/nature11576.

    Article  Google Scholar 

  • Trenberth, K. E., A. G. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteorol. Soc., 84, 1205–1217, doi: 10.1175/bams-84-9-1205.

    Article  Google Scholar 

  • Trenberth, K. E., J. Fasullo, and L. Smith, 2005: Trends and variability in column-integrated atmospheric water vapor. Climate Dyn., 24, 741–758, doi: 10.1007/s00382-005-0017-4.

    Article  Google Scholar 

  • Trenberth, K. E., and Coauthors, 2007: Observations: surface and atmospheric climate change. Chapter 9, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon} et al., Eds., Cambridge University Press, 747–8

    Google Scholar 

  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 4316–4340, doi: 10.1175/jcli4258.1.

    Article  Google Scholar 

  • Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 73–76, doi: 10.1038/nature04744.

    Article  Google Scholar 

  • Vose, R. S., R. L. Schmoyer, P. M. Steurer, T. Peterson, R. Heim, T. Karl, and J. Eischeid, 1992: The Global Historical Climatology Network: Long–Term Monthly Temperature, Precipitation, Sea Level Pressure, and Station Pressure Data. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN., 325 pp, doi: 10.3334/CDIAC/cli.ndp041.

    Google Scholar 

  • Yu, B., and F. W. Zwiers, 2010: Changes in equatorial atmospheric zonal circulations in recent decades. Geophys. Res. Lett., 37, L05701, doi: 10.1029/2009gl042071.

    Google Scholar 

  • Zhao, H. X., and G. W. K. Moore, 2008: Trends in the boreal summer regional Hadley and Walker circulations as expressed in precipitation records from Asia and Africa during the latter half of the 20th century. International Journal of Climatology, 28, 563–578, doi: 10.1002/Joc.1580.

    Article  Google Scholar 

  • Zhou, Y. P., K. M. Xu, Y. C. Sud, and A. K. Betts, 2011: Recent trends of the tropical hydrological cycle inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data. J. Geophys. Res., 116, D09101, doi: 10.1029/2010jd015197.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaw Chen Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Liu, S.C., Shiu, CJ. et al. Trends of regional precipitation and their control mechanisms during 1979–2013. Adv. Atmos. Sci. 33, 164–174 (2016). https://doi.org/10.1007/s00376-015-5117-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-015-5117-4

Keywords

Navigation