Skip to main content
Log in

Application of an artificial neural network for a direct estimation of atmospheric instability from a next-generation imager

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Atmospheric instability information derived from satellites plays an important role in short-term weather forecasting, especially the forecasting of severe convective storms. For the next generation of weather satellites for Korea’s multi-purpose geostationary satellite program, a new imaging instrument has been developed. Although this imaging instrument is not designed to perform full sounding missions and its capability is limited, its multi-spectral infrared channels provide information on vertical sounding. To take full advantage of the observation data from the much improved spatiotemporal resolution of the imager, the feasibility of an artificial neural network approach for the derivation of the atmospheric instability is investigated. The multi-layer perceptron model with a feed-forward and back-propagation training algorithm shows quite a sensitive response to the selection of the training dataset and model architecture. Through an extensive performance test with a carefully selected training dataset of 7197 independent profiles, the model architectures are selected to be 12, 5000, and 0.3 for the number of hidden nodes, number of epochs, and learning rate, respectively. The selected model gives a mean absolute error, RMSE, and correlation coefficient of 330 J kg-1, 420 J kg-1, and 0.9, respectively. The feasibility is further demonstrated via application of the model to real observation data from a similar instrument that has comparable observation channels with the planned imager.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berk, A., G. P. Anderson, P. K. Acharya, and E. P. Shettle, 2011: MODTRAN® 5.2.2 User’s Manual. Spectral Sciences, INC., Burlington, MA, 69 pp.

    Google Scholar 

  • Blackwell, W. J., and F. W. Chen, 2009: Introduction to multilayer perceptron neural networks. Neural Networks in Atmospheric Remote Sensing, Massachusetts Institute of Technology, 73–96.

    Google Scholar 

  • Botes, D., J. R. Mecikalski, and G. J. Jedlovec, 2012: Atmospheric Infrared Sounder (AIRS) sounding evaluation and analysis of the pre-convective environment. J. Geophys. Res., 117(D9), doi: 10.1029/2011JD016996.

    Google Scholar 

  • Craven, J. P., R. E. Jewell, and H. E. Brooks, 2002: Comparison between observed convective cloud-base heights and lifting condensation level for two different lifted parcels. Wea. Forecasting, 17, 885–890.

    Article  Google Scholar 

  • EUMETSAT, 2013: ATBD for the MSG GII/TOZ product. EUM/MET/DOC/11/0247, 32 pp.

  • Gardner, M. W., and S. R. Dorling, 1998: Artificial neural networks (the multilayer perceptron): A review of applications in the atmospheric sciences. Atmos. Environ., 32, 2627–2636.

    Article  Google Scholar 

  • Hilton, F., and Coauthors, 2012: Hyperspectral earth observation from IASI: Five years of accomplishments. Bull. Amer. Meteor. Soc., 93(3), 347–370.

    Article  Google Scholar 

  • Jin, X., and J. Li, 2010: Improving moisture profile retrieval from broadband infrared radiances with an optimized firstguess scheme. Remote Sensing Letters, 1(4), 231–238, doi: 10.1080/01431161003762322.

    Article  Google Scholar 

  • Jin, X., J. Li, T. J. Schmit, J. L. Li, M. D. Goldberg, and J. J. Gurka, 2008: Retrieving clear-sky atmospheric parameters from SEVIRI and ABI infrared radiances. J. Geophys. Res., 113, D15310, doi: 10.1029/2008JD010040.

    Article  Google Scholar 

  • Kitzmiller, D. H., and W. E. McGovern, 1989: VAS retrievals as a source of information for convective weather forecasts: An objective assessment and comparison with other sources of upper-air observations. Mon. Wea. Rev., 117, 2095–2110.

    Article  Google Scholar 

  • Kim, D. H., and M. H. Ahn, 2014: Introduction of the in-orbit test and its performance for the first meteorological imager of the Communication, Ocean, and Meteorological Satellite. Atmospheric Measurement Techniques, 7, 2471–2485.

    Article  Google Scholar 

  • Koenig, M., and E. de Coning, 2009: The MSG global instability indices product and its use as a nowcasting tool. Wea. Forecasting, 24, 272–282.

    Article  Google Scholar 

  • Krasnopolsky, V. M., 2007: Neural network emulations for complex multidimensional geophysical mappings: Applications of neural network techniques to atmospheric and oceanic satellite retrievals and numerical modeling. Rev. Geophys., 45, RG3009, doi: 10.1029/2006RG000200.

    Article  Google Scholar 

  • Lee, S. J., M. H. Ahn, and Y. Lee, 2013: Application of artificial neural network for direct estimation of atmospheric instability Index (CAPE) from geostationary satellite. Proceedings of Autumn Meeting of KMS, 544–545, Gwang-ju, Korea, Kor. Meteo. Soc.

    Google Scholar 

  • Lee, S. J., M. H. Ahn, and Y. Lee, 2014a: Application of artificial neural network for the direct estimation of atmospheric instability from a geostationary satellite imager. 10pp, Proceedings of the 19th ITSC, Jeju Island, South Korea.

    Google Scholar 

  • Lee, Y.-K., Z. L. Li, J. Li, and T. J. Schmit, 2014b: Evaluation of the GOES-R ABI LAP retrieval algorithm using the GOES-13 sounder. J. Atmos. Oceanic Technol., 31, 3–19, doi: 10.1175/JTECH-D-13-00028.1.

    Article  Google Scholar 

  • Li, J., C.-Y. Liu, P. Zhang, and T. J. Schmit, 2012: Applications of full spatial resolution space-based advanced infrared soundings in the preconvection environment. Wea. Forecasting, 27, 515–524.

    Article  Google Scholar 

  • Li, Z. L., J. Li, W. P. Menzel, T. J. Schmit, J. P. Nelson III, J. Daniels, and S. A. Ackerman, 2008: GOES sounding improvement and applications to severe storm nowcasting. Geophys. Res. Lett., 35, L03806, doi: 10.1029/2007GL032797.

    Google Scholar 

  • Liu, H., C. Wu, J. Li, and Q. Chengli, 2014: Deriving atmospheric instability indices directly from Geostationary Interferometric Infrared Sounder (GIIRS) radiances. poster presentation in the 19th ITSC, Jeju Island, South Korea.

    Google Scholar 

  • Ma, X. L., T. J. Schmit, and W. L. Smith, 1999: A nonlinear physical retrieval algorithm-its application to the GOES-8/9 sounder. J. Appl. Meteor., 38, 501–513.

    Article  Google Scholar 

  • Martinez, M. A., M. Velazquez, M. Manso, and I. Mas, 2007: Application of LPW and SAI SAFNWC/MSG satellite products in pre-convective environments. Atmospheric Research, 83, 366–379.

    Article  Google Scholar 

  • Menzel, W. P., F. C. Holt, T. J. Schmit, R. M. Aune, A. J. Schreiner, G. S. Wade, and D. G. Gray, 1998: Application of GOES-8/9 soundings to weather forecasting and nowcasting. Bull. Amer. Meteor. Soc., 79(10), 2059–2077.

    Article  Google Scholar 

  • Oolman, L., 2014: Upper Air Data Soundings. University of Wyoming, College of Engineering, Department of Atmospheric Science. [Available online at http://weather.uwyo.edu/], accessed in July 2014.

    Google Scholar 

  • Romero, R., M. Gayà, and C. A. Dowsell III, 2007: European climatology of severe convective storm environmental parameters: a test for significant tornado events. Atmospheric Research, 83, 389–404.

    Article  Google Scholar 

  • Schmit, T. J., J. Li, J. L. Li, W. F. Feltz, J. J. Gurka, M. D. Goldberg, and K. J. Schrab, 2008: The GOES-R advanced baseline imager and the continuation of current sounder products. Journal of Applied Meteorology and Climatology, 47, 2696–2711, doi: 10.1175/2008JAMC1858.1.

    Article  Google Scholar 

  • Seemann, S. W., J. Li, W. P. Menzel, and L. E. Gumley, 2003: Operational retrieval of atmospheric temperature, moisture, and ozone from MODIS infrared radiances. J. Appl. Meteor., 42, 1072–1091.

    Article  Google Scholar 

  • Seidel, D. J., B. Sun, M. Pettey, and A. Reale, 2011: Global radiosonde balloon drift statistics. J. Geophys. Res., 116, D07102, doi: 10.1029/2010JD014891.

    Google Scholar 

  • Setvák, M., and J. Müller, 2013: 2.5-minute rapid scan experiments with the MSG satellites. 7th European Conference on Severe Storms, Helsinki, Finland, 3-7 June 2013.

    Google Scholar 

  • Taravat, A., S. Proud, S. Peronaci, F. de Frate, and N. Oppelt, 2015: Multilayer perceptron neural networks model for meteosat second generation SEVIRI daytime cloud masking. Remote Sensing, 7, 1529–1539.

    Article  Google Scholar 

  • Zhang, G. J., 2002: Convective quasi-equilibrium in midlatitude continental environment and its effect on convective parameterization. J. Geophys. Res., 107, ACL 12-1-ACL 12-16, doi: 10.1029/2001JD001005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung-Hwan Ahn.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.J., Ahn, MH. & Lee, Y. Application of an artificial neural network for a direct estimation of atmospheric instability from a next-generation imager. Adv. Atmos. Sci. 33, 221–232 (2016). https://doi.org/10.1007/s00376-015-5084-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-015-5084-9

Keywords

Navigation