Skip to main content
Log in

The Southwest Indian Ocean thermocline dome in CMIP5 models: Historical simulation and future projection

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Using 20 models of the Coupled Model Intercomparison Project Phase 5 (CMIP5), the simulation of the Southwest Indian Ocean (SWIO) thermocline dome is evaluated and its role in shaping the Indian Ocean Basin (IOB) mode following El Ni˜no investigated. In most of the CMIP5 models, due to an easterly wind bias along the equator, the simulated SWIO thermocline is too deep, which could further influence the amplitude of the interannual IOB mode. A model with a shallow (deep) thermocline dome tends to simulate a strong (weak) IOB mode, including key attributes such as the SWIO SST warming, antisymmetric pattern during boreal spring, and second North Indian Ocean warming during boreal summer. Under global warming, the thermocline dome deepens with the easterly wind trend along the equator in most of the models. However, the IOB amplitude does not follow such a change of the SWIO thermocline among the models; rather, it follows future changes in both ENSO forcing and local convection feedback, suggesting a decreasing effect of the deepening SWIO thermocline dome on the change in the IOB mode in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Annamalai, H., P. Liu and S.-P. Xie, 2005: Southwest Indian Ocean SST variability: Its local effect and remote influence on Asian monsoons. J. Climate, 18, 4150–4167.

    Article  Google Scholar 

  • Annamalai, H., H. Okajima, and M. Watanabe, 2007: Possible impact of the Indian Ocean SST on the Northern Hemisphere during El Niño. J. Climate, 20, 3164–3189.

    Article  Google Scholar 

  • Cai, W. J., and T. Cowan, 2013: Why is the amplitude of the Indian Ocean Dipole overly large in CMIP3 and CMIP5 climate models? Geophys. Res. Lett., 40, 1200–1205.

    Article  Google Scholar 

  • Cai, W. J., X.-T. Zheng, E. Weller, M. Collins, T. Cowan, M. Lengaigne, W. D. Yu, and T. Yamagata, 2013: Projected response of the Indian Ocean Dipole to greenhouse warming. Nature Geoscience, 6, 999–1007.

    Article  Google Scholar 

  • Carton, J. A. and B. S. Giese, 2008: A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon. Wea. Rev., 136, 2999–3017.

    Article  Google Scholar 

  • Deser, C., A. S. Phillips, and J. W. Hurrell, 2004: Pacific interdecadal climate variability: Linkages between the tropics and the North Pacific during boreal winter since 1900. J. Climate, 17, 3109–3124.

    Article  Google Scholar 

  • Du, Y., S.-P. Xie, G. Huang, and K. M. Hu, 2009: Role of air-sea interaction in the long persistence of El Niño-induced North Indian Ocean warming. J. Climate, 22, 2023–2038.

    Article  Google Scholar 

  • Du, Y., L. Yang, and S.-P. Xie, 2011: Tropical Indian Ocean influence on Northwest Pacific tropical cyclones in summer following strong El Niño. J. Climate, 24, 315–322.

    Article  Google Scholar 

  • Du, Y., S.-P. Xie, Y.-L. Yang, X.-T. Zheng, L. Liu, and G. Huang, 2013: Indian Ocean variability in the CMIP5 multi-model ensemble: The basin mode. J. Climate, 26, 7240–7266.

    Article  Google Scholar 

  • Du, Y., J. J. Xiao, and K. F. Yu, 2014: Tropical Indian Ocean Basin Mode recorded in coral oxygen isotope data from the Seychelles over the past 148 years. Science China Earth Sciences, 57, 2597–2605, doi: 10.1007/s11430-014-4956-7.

    Article  Google Scholar 

  • Guo, F. Y., Q. Y. Liu, S. Sun, and J. L. Yang, 2015: Three types of Indian Ocean dipoles. J. Climate, 28, 3073–3092.

    Article  Google Scholar 

  • Hu, K. M., G. Huang, X.-T. Zheng, S.-P. Xie, X. Qu, Y. Du, and L. Liu, 2014: Interdecadal variations in ENSO influences on Northwest Pacific-East Asian summertime climate simulated in CMIP5 models. J. Climate, 27, 5982–5998.

    Article  Google Scholar 

  • Huang, B. H., and J. L. Kinter III, 2002: Interannual variability in the tropical Indian Ocean. J. Geophys. Res., 107, 3319, doi: 10.1029/2001JC001278.

    Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Kawamura, R., T. Matsuura, and S. Iizuka, 2001: Role of equatorially asymmetric sea surface temperature anomalies in the Indian Ocean in the Asian summer monsoon and El Niño-Southern Oscillation coupling. J. Geophys. Res., 106, 4681–4693.

    Article  Google Scholar 

  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917–932.

    Article  Google Scholar 

  • Li, G., and S.-P. Xie, 2012: Origins of tropical-wide SST biases in CMIP multi-model ensembles. Geophys. Res. Lett., 39, L22703, doi: 10.1029/2012GL053777.

    Google Scholar 

  • Li, G., and S.-P. Xie, 2014: Tropical biases in CMIP5 multimodel ensemble: The excessive equatorial Pacific cold tongue and double ITCZ problems. J. Climate, 27, 1765–1780.

    Article  Google Scholar 

  • Li, G., S.-P. Xie, and Y. Du, 2015a: Monsoon-induced biases of climate models over the tropical Indian Ocean with implications for regional climate projection. J. Climate, 28, 3058–3072.

    Article  Google Scholar 

  • Li, G., S.-P. Xie, and Y. Du, 2015b: Climate model errors over the South Indian Ocean thermocline dome and their effect on the basin mode of interannual variability. J. Climate, 28, 3093–3098.

    Article  Google Scholar 

  • Masumoto, Y., and G. Meyers, 1998: Forced Rossby waves in the southern tropical Indian Ocean. J. Geophys. Res., 103(C12), 27589–27602.

    Article  Google Scholar 

  • McCreary, J. P., P. K. Kundu, and R. L. Molinari, 1993: A numerical investigation of dynamics, thermodynamics and mixedlayer processes in the Indian Ocean. Progress in Oceanography, 31, 181–244.

    Article  Google Scholar 

  • Nagura, M., W. Sasaki, T. Tozuka, J.-J. Luo, S. K. Behera, and T. Yamagata, 2013: Longitudinal biases in the Seychelles Dome simulated by 35 ocean-atmosphere coupled general circulation models. J. Geophys. Res., 118, 831–846, doi: 10.1029/ 2012JC008352.

    Article  Google Scholar 

  • Reverdin, G., and M. Fieux, 1987: Sections in the western Indian Ocean—variability in the temperature structure. Deep- Sea Res., 34, 601–626.

    Article  Google Scholar 

  • Saji, N. H., S.-P. Xie, and T. Yamagata, 2006: Tropical Indian Ocean variability in the IPCC Twentieth-century climate simulations. J. Climate, 19, 4397–4417.

    Article  Google Scholar 

  • Schott, F. A., S.-P. Xie, and J. P. McCreary Jr., 2009: Indian Ocean circulation and climate variability. Reviews of Geophysics, 47, RG1002, doi: 10.1029/2007RG000245.

    Article  Google Scholar 

  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296.

    Article  Google Scholar 

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498.

    Article  Google Scholar 

  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 4316–4340.

    Article  Google Scholar 

  • Wittenberg, A. T., A. Rosati, N.-C. Lau, and J. J. Ploshay, 2006: GFDL’s CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate, 19, 698–722.

    Article  Google Scholar 

  • Woodberry, K. E., M. E. Luther, and J. J. O’Brien, 1989: The wind-driven seasonal circulation in the southern tropical Indian Ocean. J. Geophys. Res., 94(C12), 17985–18002.

    Article  Google Scholar 

  • Wu, R. G., B. P. Kirtman, and V. Krishnamurthy, 2008: An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J. Geophys. Res., 113, D05104, doi: 10.1029/2007JD009316.

    Google Scholar 

  • Xiang, B. Q., B. Wang, Q. H. Ding, F.-F. Jin, X. H. Fu, and H.-J. Kim, 2012: Reduction of the thermocline feedback associated with mean SST bias in ENSO simulation. Climate Dyn., 39, 1413–1430, doi: 10.1007/s00382-011-1164-4.

    Article  Google Scholar 

  • Xie, P. P., and P. A. Arkin, 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9, 840–858.

    Article  Google Scholar 

  • Xie, S.-P., and S. G. H. Philander, 1994: A coupled oceanatmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46, 340–350.

    Article  Google Scholar 

  • Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. McCreary Jr., 2002: Structure and mechanisms of South Indian Ocean climate variability. J. Climate, 15, 864–878.

    Article  Google Scholar 

  • Xie, S.-P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J. Climate, 22, 730–747.

    Article  Google Scholar 

  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Y. Teng, and A. T. Wittenberg, 2010a: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966–986.

    Article  Google Scholar 

  • Xie, S.-P., Y. Du, G. Huang, X.-T. Zheng, H. Tokinaga, K. M. Hu, and Q. Y. Liu, 2010b: Decadal shift in El Niño influences on Indo-Western Pacific and East Asian climate in the 1970s. J. Climate, 23(12), 3352–3368.

    Article  Google Scholar 

  • Yang, J. L., Q. Y. Liu, S.-P. Xie, Z. Y. Liu, and L. X. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, doi: 10.1029/2006GL028571.

    Article  Google Scholar 

  • Yokoi, T., T. Tozuka, and T. Yamagata, 2008: Seasonal variation of the Seychelles Dome. J. Climate, 21, 3740–3754.

    Article  Google Scholar 

  • Yokoi, T., T. Tozuka, and T. Yamagata, 2009: Seasonal variations of the Seychelles Dome simulated in the CMIP3 models. J. Phys. Oceanogr., 39, 449–457.

    Article  Google Scholar 

  • Yokoi, T., T. Tozuka, and T. Yamagata, 2012: Seasonal and interannual variations of the SST above the Seychelles Dome. J. Climate, 25, 800–814.

    Article  Google Scholar 

  • Yu, W. D., B. Q. Xiang, L. Liu, and N. Liu, 2005: Understanding the origins of interannual thermocline variations in the tropical Indian Ocean. Geophys. Res. Lett., 32, L24706, doi: 10.1029/2005GL024327.

    Article  Google Scholar 

  • Zheng, X.-T., S.-P. Xie, G. A. Vecchi, Q. Y. Liu, and J. Hafner, 2010: Indian Ocean dipole response to global warming: Analysis of ocean-atmospheric feedbacks in a coupled model. J. Climate, 23, 1240–1253.

    Article  Google Scholar 

  • Zheng, X.-T., S.-P. Xie, and Q. Y. Liu, 2011: Response of the Indian Ocean basin mode and its capacitor effect to global warming. J. Climate, 24, 6146–6164.

    Article  Google Scholar 

  • Zheng, X.-T., S.-P. Xie, Y. Du, L. Liu, G. Huang, and Q. Y. Liu, 2013: Indian Ocean Dipole response to global warming in the CMIP5 multi-model ensemble. J. Climate, 26, 6067–6080.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Tong Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, XT., Gao, L., Li, G. et al. The Southwest Indian Ocean thermocline dome in CMIP5 models: Historical simulation and future projection. Adv. Atmos. Sci. 33, 489–503 (2016). https://doi.org/10.1007/s00376-015-5076-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-015-5076-9

Keywords

Navigation