Skip to main content
Log in

Effect of methane emission increases in East Asia on atmospheric circulation and ozone

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

We used a fully coupled chemistry–climate model (version 3 of the Whole Atmosphere Community Climate Model, WACCM3) to investigate the effect of methane (CH4) emission increases, especially in East Asia and North America, on atmospheric temperature, circulation and ozone (O3). We show that CH4 emission increases strengthen westerly winds in the Northern Hemisphere midlatitudes, accelerate the Brewer–Dobson (BD) circulation, and cause an increase in the mass flux across the tropopause. However, the BD circulation in the tropics between 10°S and 10°N at 100 hPa weakens as CH4 emissions increase in East Asia and strengthens when CH4 emissions increase in North America. When CH4 emissions are increased by 50% in East Asia and 15% globally, the stratospheric temperature cools by up to 0.15 K, and the stratospheric O3 increases by 45 ppbv and 60 ppbv, respectively. A 50% increase of CH4 emissions in North America (with an amplitude of stratospheric O3 increases by 60 ppbv) has a greater influence on the stratospheric O3 than the same CH4 emissions increase in East Asia. CH4 emission increases in East Asia and North America reduce the concentration of tropospheric hydroxyl radicals (4% and 2%, respectively) and increase the concentration of mid-tropospheric O3 (5% and 4%, respectively) in the Northern Hemisphere midlatitudes. When CH4 emissions increase in East Asia, the increase in the tropospheric O3 concentration is largest in August. When CH4 emissions increase in North America, the increase in the O3 concentration is largest in July in the mid-troposphere, and in April in the upper troposphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 2031–2048.

    Article  Google Scholar 

  • Andrews, D. G., and M. E. McIntyre, 1978: Generalized Eliassen–Palm and Charney–Drazin theorems for waves on axismmetric mean flows in compressible atmospheres. J. Atmos. Sci., 35, 175–185.

    Article  Google Scholar 

  • Austin, J., and F. Li, 2006: On the relationship between the strength of the Brewer-Dobson circulation and the age of stratospheric air. Geophys. Res. Lett., 33, L17807, doi: 10.1029/ 2006GL026867.

    Article  Google Scholar 

  • Austin, J., J. Wilson, F. Li, and H. Vömel, 2007: Evolution of water vapor concentrations and stratospheric age of air in coupled chemistry-climate model simulations. J. Atmos. Sci., 64(3), 905–921.

    Article  Google Scholar 

  • Bergamaschi, P., and Coauthors, 2013: Atmospheric CH4 in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements. J. Geophys. Res., 118(13), 7350–7369.

    Google Scholar 

  • Bi, Y., 2009: Study on the distributions, variations and climate impacts of the water vapor and methane in stratosphere. Ph.D. dissertation, Space Physics, University of Science and Technology of China, 149 pp. (in Chinese)

    Google Scholar 

  • Bi, Y., Y. J. Chen, L. Xu, S. M. Deng, and R. J. Zhou, 2007: Analysis of H2O and CH4 distribution characteristics in the middle atmosphere using HALOE data. Chinese Journal of Atmospheric Sciences, 31(3), 440–448. (in Chinese with English abstract)

    Google Scholar 

  • Bi, Y., Y. J. Chen, R. J. Zhou, M. H. Fang, and L. Xu, 2008: Study on H2O and CH4 distributions and variations over Qinghai-Xizang Plateau using HALOE data. Plateau Meteorology, 27(2), 249–258. (in Chinese with English abstract)

    Google Scholar 

  • Born, M., H. Dörr, and I. Levin, 1990: Methane consumption in aerated soils of the temperate zone. Tellus B, 42(1), 2–8.

    Article  Google Scholar 

  • Brasseur, G. P., D. A. Hauglustaine, S. Walters, P. J. Rasch, J. - F. Müller, C. Granier, and X. X. Tie, 1998: MOZART: A global chemical transport model for ozone and related chemical tracers: 1. Model description. J. Geophys. Res., 103, 28265–28289.

    Article  Google Scholar 

  • Butchart, N., and A. A. Scaife, 2001: Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate. Nature, 410(6830), 799–802.

    Article  Google Scholar 

  • Butchart, N., and Coauthors, 2006: Simulations of anthropogenic change in the strength of the Brewer-Dobson circulation. Climate Dyn., 27(7–8), 727–741.

    Article  Google Scholar 

  • Chameides, W. L., and D. D. Davis, 1982: The free radical chemistry of cloud droplets and its impact upon the composition of rain. J. Geophys. Res., 87(C7), 4863–4877.

    Article  Google Scholar 

  • Chappellaz, J., J. M. Barnola, D. Raynaud, Y. S. Korotkevich, and C. Lorius, 1990: Ice-core record of atmospheric methane over the past 160, 000 years. Nature, 345(6271), 127–131.

    Article  Google Scholar 

  • Chen, Y. J., R. J. Zhou, C. H. Shi, and Y. Bi, 2006: Study on the trace species in the stratosphere and their impact on climate. Adv. Atmos. Sci., 23(6), 1020–1039, doi: 10.1007/s00376-006-1020-3.

    Article  Google Scholar 

  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM3). Tech. Note NCAR/TN-464+STR, Natl. Center for Atmos. Res., 226 pp.

    Google Scholar 

  • Crutzen, P., 1973: A discussion of the chemistry of some minor constituents in the stratosphere and troposphere. Pure Appl. Geophys., 106(1), 1385–1399.

    Article  Google Scholar 

  • Dyominov, I. G., and A. M. Zadorozhny, 2005: Greenhouse gases and recovery of the Earth’s ozone layer. Advances in Space Research, 35, 1369–1374.

    Article  Google Scholar 

  • Eichelberger, S. J., and D. L. Hartmann, 2005: Changes in the strength of the Brewer-Dobson circulation in a simple AGCM. Geophys. Res. Lett., 32, L15807, doi: 10.1029/2005GL022924.

    Article  Google Scholar 

  • Eyring, V., and Coauthors, 2010: Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models. Atmospheric Chemistry and Physics, 10(19), 9451–9472.

    Article  Google Scholar 

  • Fiore, A. M., J. J. West, L. W. Horowitz, V. Nail, and M. D. Schwarzkopf, 2008: Characterizing the tropospheric ozone response to methane emission controls and the benefits to climate and air quality. J. Geophys. Res., 113, D08307, doi: 10.1029/2007JD009162.

    Google Scholar 

  • Fomichev, V. I., A. I. Jonsson, J. de Grandpre, S. R. Beagley, C. McLandress, K. Semeniuk, and T. G. Shepherd, 2007: Response of the middle atmosphere to CO2 doubling: Results from the Canadian Middle Atmosphere Model. J. Climate, 20(7), 1121–1144.

    Article  Google Scholar 

  • Fuglestvedt, J. S., I. S. A. Isaksen, and W. C. Wang, 1996: Estimates of indirect global warming potentials for CH4, CO and NOx. Climatic Change, 34(3–4), 405–437.

    Article  Google Scholar 

  • Garcia, R. R., and W. J. Randel, 2008: Acceleration of the Brewer-Dobson circulation due to increases in greenhouse gases. J. Atmos. Sci., 65, 2731–2739.

    Article  Google Scholar 

  • Garcia, R. R., D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi, 2007: Simulation of secular trends in the middle atmosphere, 1950–2003. J. Geophys. Res., 112, D09301, doi: 10.1029/2006JD007485.

    Google Scholar 

  • Garny, H., M. Dameris, W. Randel, G. E. Bodeker, and R. Deckert, 2011: Dynamically forced increase of tropical upwelling in the lower stratosphere. J. Atmos. Sci., 68, 1214–1233.

    Article  Google Scholar 

  • Gruzdev, A. N., and G. P. Brasseur, 2005: Long-term changes in the mesosphere calculated by a two-dimensional model. J. Geophys. Res., 110, 304–321.

    Google Scholar 

  • Guo, S. C., H. Zhou, D. R. Lv, Y. Q. Li, M. Dai, and Q. Li, 2008: Temporal and spatial features of atmospheric methane and its relation to ozone variation in the stratosphere. Journal of Yunnan University (Natural Sciences Edition), 30(4), 381–387. (in Chinese with English abstract)

    Google Scholar 

  • Hall, T. M., and R. A. Plumb, 1994: Age as a diagnostic of stratospheric transport. J. Geophys. Res., 99(D1), 1059–1070.

    Article  Google Scholar 

  • Hauglustaine, D. A., G. P. Brasseur, S. Walters, P. J. Rasch, J.-F. Müller, L. K. Emmons, and M. A. Carroll, 1998: MOZART: A global chemical transport model for ozone and related chemical tracers: 2. Model results and evaluation. J. Geophys. Res., 103, 28291–28335.

    Article  Google Scholar 

  • Holton, J. R., 1990: On the global exchange of mass between the stratosphere and troposphere. J. Atmos. Sci., 48, 392–395.

    Article  Google Scholar 

  • Horowitz, L. W., and Coauthors, 2003: A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2. J. Geophys. Res., 108(D24), doi: 10.1029/2002JD002853.

    Google Scholar 

  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, 996 pp.

  • Isaksen, I. S. A., and F. Stordal, 1986: Antarctic ozone depletion: 2-D model studies. Geophys. Res. Lett., 13(12), 1327–1330.

    Article  Google Scholar 

  • Lang, C., and Coauthors, 2012: The impact of greenhouse gases on past changes in tropospheric ozone. J. Geophys. Res., 117, D23304, doi: 10.1029/2012JD018293.

    Article  Google Scholar 

  • Lelieveld, J., and P. J. Crutzen, 1992: Indirect chemical effects of methane on climate warming. Nature, 355, 339–342.

    Article  Google Scholar 

  • Lelieveld, J., P. J. Crutzen, and F. J. Dentener, 1998: Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus B, 50(2), 128–150.

    Article  Google Scholar 

  • Levy, H. II., 1971: Normal atmosphere: Large radical and formaldehyde concentrations predicted. Science, 173, 141–143.

    Article  Google Scholar 

  • Lin, P., and Q. Fu, 2013: Changes in various branches of the Brewer-Dobson circulation from an ensemble of chemistry climate models. J. Geophys. Res., 118(1), 73–84.

    Article  Google Scholar 

  • Liu, Y., and C. X. Liu, 2009: Simulation studies on seasonal variations of the stratospheric dynamics and trace gases using coupled chemistry-climate model WACCM-3. Chinese Journal of Space Science, 29(6), 580–590. (in Chinese with English abstract)

    Google Scholar 

  • Marenco, A., H. Gouget, P. Nédélec, J.-P. Pagés, and F. Karcher, 1994: Evidence of a long-term increase in tropospheric ozone from Pic du Midi data series: Consequences: Positive radiative forcing. J. Geophys. Res., 99(D8), 16617–16632.

    Article  Google Scholar 

  • Olsen, M. A., M. R. Schoeberl, and J. E. Nielsen, 2007: Response of stratospheric circulation and stratosphere-troposphere exchange to changing sea surface temperatures. J. Geophys. Res., 112, D16104, doi: 10.1029/2006JD008012.

    Article  Google Scholar 

  • Owens, A. J., J. M. Steed, D. L. Filkin, C. Miller, and J. P. Jesson, 1982: The potential effects of increased methane on atmospheric ozone. Geophys. Res. Lett., 9(9), 1105–1108.

    Article  Google Scholar 

  • Owens, A.J., C. H. Hales, D. L. Filkin, C. Miller, J. M. Steed, and J. P. Jesson, 1985: A coupled one-dimensional radiativeconvective, chemistry-transport model of the atmosphere: 1. Model structure and steady state perturbation calculations. J. Geophys. Res., 90, 2283–2311.

    Article  Google Scholar 

  • Qin, Y., and C. S. Zhao, 2003: Basic Atmospheric Chemistry. Meteorology Press, 202 pp. (in Chinese)

    Google Scholar 

  • Ramaswamy, V., and Coauthors, 2001: Radiative forcing of climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, New York, 349–416.

    Google Scholar 

  • Rasmussen, R.A., and M. A. K. Khalil, 1984: Atmospheric methane in the recent and ancient atmospheres: Concentrations, trends, and interhemispheric gradient. J. Geophys. Res., 89(D7), 11599–11605.

    Article  Google Scholar 

  • Rayner, N.A., and Coauthors, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108(D14), doi: 10.1029/2002JD002670.

    Google Scholar 

  • Rind, D., J. Lerner, and C. McLinden, 2001: Changes of tracer distributions in the doubled CO2 climate. J. Geophys. Res., 106(D22), 28061–28079.

    Article  Google Scholar 

  • Shi, C.H., 2006: Study on the trends and chemical process of trace gases in stratosphere. PhD. dissertation, Space Physics, University of Science and Technology of China, 191 pp. (in Chinese)

    Google Scholar 

  • Shi, C.H., B. Zheng, Y. J. Chen, and Y. Bi, 2009: The quasibiennial oscillation of water vapor in tropical stratosphere. Chinese Journal of Geophysics, 52(10), 2428–2435. (in Chinese with English abstract)

    Google Scholar 

  • Shindell, D.T., G. Faluvegi, N. Bell, and G. A. Schmidt, 2005: An emissions-based view of climate forcing by methane and tropospheric ozone. Geophys. Res. Lett., 32(4), L04803, doi: 10.1029/2004GL021900.

    Google Scholar 

  • Sigmond, M., P. C. Siegmund, E. Manzini, and H. Kelder, 2004: A simulation of the separate climate effects of middleatmospheric and tropospheric CO2 doubling. J. Climate, 17(12), 2352–2367.

    Article  Google Scholar 

  • Stevenson, D., and Coauthors, 2006: Multimodel ensemble simulations of present-day and near-future tropospheric ozone. J. Geophys. Res., 111(D8), doi: 10.1029/2005JD006338.

    Google Scholar 

  • Wang, Y.H., and D. J. Jacob, 1998: Anthropogenic forcing on tropospheric ozone and OHsince preindustrial times. J. Geophys. Res., 103(D23), 31123–31135.

    Article  Google Scholar 

  • Wang, W.G., M. Yuan, J. Wu, W. X. Fan, H. Y. Wang, and X. L. Liu, 2006: The variation of spatial temporal distribution of the global tropopause ozone. Journal of Yunnan University (Natural Sciences Edition), 28(6), 509–517. (in Chinese with English abstract)

    Google Scholar 

  • Waugh, D., and T. Hall, 2002: Age of stratospheric air: Theory, observations, and models. Rev. Geophys., 40, 1-1–1-26.

    Google Scholar 

  • Wild, O., and P. I. Palmer, 2008: How sensitive is tropospheric oxidation to anthropogenic emissions? Geophys. Res. Lett., 35(22), doi: 10.1029/2008GL035718.

    Google Scholar 

  • Wuebbles, D.J., and K. Hayhoe, 2002: Atmospheric methane and global change. Earth-Science Reviews, 57(3–4), 177–210.

    Article  Google Scholar 

  • Xie, F., W. S. Tian, J. P. Li, J. K. Zhang, and L. Shang, 2013: The possible effects of future increase in methane emission on the stratospheric water vapor and global ozone. Acta Meteorologica Sinica, 71(3), 555–567. (in Chinese with English abstract)

    Google Scholar 

  • Zhang, R.J., M. X.Wang, and Y. S.Wang, 2001: Long-term trends of atmospheric methane and its future change. Climate and Environmental Research, 6(1), 53–57. (in Chinese with English abstract)

    Google Scholar 

  • Zhang, X.Y., W. G. Bai, P. Zhang, and W. H. Wang, 2011: Spatiotemporal variations in mid-upper tropospheric methane over China from satellite observations. Chinese Science Bulletin, 56, 3321–3327.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, L., Liu, Y., Tian, W. et al. Effect of methane emission increases in East Asia on atmospheric circulation and ozone. Adv. Atmos. Sci. 32, 1617–1627 (2015). https://doi.org/10.1007/s00376-015-5028-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-015-5028-4

Keywords

Navigation