Skip to main content
Log in

Sensitivity of the warm core of tropical cyclones to solar radiation

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

To investigate the impacts of solar radiation on tropical cyclone (TC) warm-core structure (i.e., the magnitude and height), a pair of idealized simulations are conducted by specifying different strengths of solar shortwave radiation. It is found that the TC warm core is highly sensitive to the shortwave radiative effect. For the nighttime storm, a tendency for a more intense warm core is found, with an elevated height compared to its daytime counterpart. As pointed out by previous studies, the radiative cooling during nighttime destabilizes the local and large-scale environment and thus promotes deep moist convection, which enhances the TC’s intensity. Due to the different inertial stabilities, the diabatic heating in the eyewall will force different secondary circulations. For a strong TC with a deeper vertical structure, this promotes a thin upper-level inflow layer. This inflow carries the lower stratospheric air with high potential temperature and descends adiabatically in the eye, resulting in significant upper-level warming. The Sawyer–Eliassen diagnosis further confirms that the height of the maximum temperature anomaly is likely attributable to the balance among the forced secondary circulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Braun, S. A., 2002: A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy. Mon. Wea. Rev., 130, 1573–1592.

    Article  Google Scholar 

  • Chen, H., and D.-L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146–172.

    Article  Google Scholar 

  • Dai, A. G., 2001: Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 14, 1112–1128.

    Google Scholar 

  • Durden, S. L., 2013: Observed tropical cyclone eye thermal anomaly profiles extending above 300 hPa. Mon. Wea. Rev., 141, 4256–4268.

    Article  Google Scholar 

  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585–604.

    Google Scholar 

  • Ge, X., Y. Ma, S.W. Zhou, and T. Li, 2014: Impacts of the diurnal cycle of radiation on tropical cyclone intensification and structure. Adv. Atmos. Sci., 31, 1377–1385, doi: 10.1007/s00376-014-4060-0.

    Article  Google Scholar 

  • Ge, X. Y., T. Li, and M. Peng, 2013: Effects of vertical shears and mid-level dry air on tropical cyclone developments. J. Atmos. Sci., 70, 3859–3875.

    Article  Google Scholar 

  • Hack, J. J., and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 1559–1573.

    Article  Google Scholar 

  • Halverson, J. B., J. Simpson, G. Heymsfield, H. Pierce, T. Hock, and L. Ritchie, 2006: Warm core structure of Hurricane Erin diagnosed from high altitude dropsondes during CAMEX-4. J. Atmos. Sci., 63, 309–324.

    Article  Google Scholar 

  • Hawkins, H. F., and D. T. Rubsam, 1968: Hurricane Hilda, 1964. II: Structure and budgets of the hurricane on October 1, 1964. Mon. Wea. Rev., 96, 617–636.

    Article  Google Scholar 

  • Hawkins, H. F., and S. M. Imbembo, 1976: The structure of a small, intense hurricane—Inez 1966. Mon. Wea. Rev., 104, 418–442.

    Article  Google Scholar 

  • Hendricks, E. A., and M. T. Montgomery, 2004: The role of “vortical” hot towers in the formation of tropical cyclone Diana (1984). J. Atmos. Sci., 61, 1209–1232.

    Article  Google Scholar 

  • Heymsfield, G. M., J. B. Halverson, J. Simpson, L. Tian, and T. P. Bui, 2001: ER-2 Doppler radar investigations of the eyewall of Hurricane Bonnie during the Convection and Moisture Experiment-3. J. Appl. Meteor., 40, 1310–1330.

    Article  Google Scholar 

  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 2519–2541.

    Article  Google Scholar 

  • Holland, G. J., T. D. Keenan, and G. D. Crane, 1984: Observations of a phenomenal temperature perturbation in Tropical Cyclone Kerry (1979). Mon. Wea. Rev., 112, 1074–1082.

    Article  Google Scholar 

  • Hong, S. Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). Journal of the Korean Meteorological Society, 42, 129–151.

    Google Scholar 

  • Hong, S. Y, Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.

    Article  Google Scholar 

  • Knaff, J. A., S. A. Seseske, M. DeMaria, and J. L. Demuth, 2004: On the influences of vertical wind shear on symmetric tropical cyclone structure derived from AMSU. Mon. Wea. Rev., 132, 2503–2510.

    Article  Google Scholar 

  • Liang, J., L. G. Wu, and H. J. Zhong, 2014: Idealized numerical simulations of tropical cyclone formation associated with monsoon gyres. Adv. Atmos. Sci., 31, 305–315, doi: 10.1007/s00376-013-2282-1.

    Article  Google Scholar 

  • Lin, Y. L., R. D. Rarley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Appl. Meteor., 22, 1065–1092.

    Article  Google Scholar 

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 663–682.

    Google Scholar 

  • Melhauser, C., and F. Q. Zhang, 2014: Diurnal radiation cycle impact on the pregenesis environment of Hurricane Karl (2010). J. Atmos. Sci., 71, 1241–1259.

    Article  Google Scholar 

  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851–875.

    Article  Google Scholar 

  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 1456–1475.

    Article  Google Scholar 

  • Nolan, D. S., Y. Moon, and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 3377–3405.

    Article  Google Scholar 

  • Ohno, T., and M. Satoh, 2014: On the Warm core of the tropical cyclone formed near the tropopause. J. Atmos. Sci., doi: 10.1175/JAS-D-14-0078.1. (in press)

    Google Scholar 

  • Powell, M. D., E. W. Uhlhorn, and J. D. Kepert, 2009: Estimating maximum surface winds from hurricane reconnaissance measurements. Wea. Forecasting, 24, 868–883.

    Article  Google Scholar 

  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 1687–1697.

    Article  Google Scholar 

  • D. P., and D. S. Nolan, 2012: On the height of the warm core in tropical cyclones. J. Atmos. Sci., 69, 1657–1680.

    Article  Google Scholar 

  • Tao, W. K., S. Lang, J. Simpson, C. H. Sui, B. Ferrier, and M. D., Chou, 1996: Mechanisms of cloud-radiation interaction in the Tropics and midlatitudes. J. Atmos. Sci., 53, 2624–2651.

    Article  Google Scholar 

  • Webster, P. J., and G. L. Stephens, 1980: Tropical uppertropospheric extended clouds: Inferences from winter MONEX. J. Atmos. Sci., 37, 1521–154.

    Article  Google Scholar 

  • Willoughby, H. E., 1990: Gradient balance in tropical cyclones. J. Atmos. Sci., 47, 265–274.

    Article  Google Scholar 

  • Wu, L. G., J. Liang, and C.-C. Wu, 2011: Monsoonal influence on Typhoon Morakot (2009). Part I: Observational analysis. J. Atmos. Sci., 68, 2208–2221.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuyang Ge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, X., Ma, Y., Zhou, S. et al. Sensitivity of the warm core of tropical cyclones to solar radiation. Adv. Atmos. Sci. 32, 1038–1048 (2015). https://doi.org/10.1007/s00376-014-4206-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-014-4206-0

Key words

Navigation