Skip to main content
Log in

Evaluation of radar and automatic weather station data assimilation for a heavy rainfall event in southern China

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

To improve the accuracy of short-term (0–12 h) forecasts of severe weather in southern China, a real-time storm-scale forecasting system, the Hourly Assimilation and Prediction System (HAPS), has been implemented in Shenzhen, China. The forecasting system is characterized by combining the Advanced Research Weather Research and Forecasting (WRF-ARW) model and the Advanced Regional Prediction System (ARPS) three-dimensional variational data assimilation (3DVAR) package. It is capable of assimilating radar reflectivity and radial velocity data from multiple Doppler radars as well as surface automatic weather station (AWS) data. Experiments are designed to evaluate the impacts of data assimilation on quantitative precipitation forecasting (QPF) by studying a heavy rainfall event in southern China. The forecasts from these experiments are verified against radar, surface, and precipitation observations. Comparison of echo structure and accumulated precipitation suggests that radar data assimilation is useful in improving the short-term forecast by capturing the location and orientation of the band of accumulated rainfall. The assimilation of radar data improves the short-term precipitation forecast skill by up to 9 hours by producing more convection. The slight but generally positive impact that surface AWS data has on the forecast of near-surface variables can last up to 6–9 hours. The assimilation of AWS observations alone has some benefit for improving the Fractions Skill Score (FSS) and bias scores; when radar data are assimilated, the additional AWS data may increase the degree of rainfall overprediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585.

    Article  Google Scholar 

  • Clark, A. J., and Coauthors, 2012: An overview of the 2010 Hazardous Weather Testbed experimental forecast program Spring Experiment. Bull. Amer. Meteor. Soc., 93, 55–74.

    Article  Google Scholar 

  • Cucurull, L., F. Vandenberghe, D. Barker, E. Vilaclara, and A. Rius, 2004: Three-dimensional variational data assimilation of ground-based GPS ZTD and meteorological observations during the 14 December 2001 storm event over the Western Mediterranean Sea. Mon. Wea. Rev., 132, 749–763.

    Article  Google Scholar 

  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107.

    Article  Google Scholar 

  • Gallus, W. A., and M. Segal., 2001: Impact of improved initialization of mesoscale features on convective system rainfall in 10-km Eta simulations. Wea. Forecasting, 16, 680–696.

    Article  Google Scholar 

  • Gao, J. D., M. Xue, K. Brewster, and K. K. Droegemeier, 2004: A three-dimensional variational data analysis method with recursive filter for Doppler radars. J. Atmos. Oceanic Technol., 21, 457–469.

    Article  Google Scholar 

  • Gu, J. F., Q. N. Xiao, Y. H. Kuo, D. M. Barker, J. S. Xue, and X. X. Ma, 2005: Assimilation and simulation of typhoon Rusa (2002) using theWRF system. Adv. Atmos. Sci., 22, 415–427, doi:10.1007/BF02918755.

    Article  Google Scholar 

  • Ha, J. K., H. W. Kim, and D. K. Lee, 2011: Observation and numerical simulations with radar and surface data assimilation for heavy rainfall over Central Korea. Adv. Atmos. Sci., 28, 573–590, doi: 10.1007/s00376-010-0035-y.

    Article  Google Scholar 

  • Hou, T. J., F. Y. Kong, X. L. Chen, and H. C. Lei, 2013: Impact of 3DVAR data assimilation on the prediction of heavy rainfall over Southern China. Advances in Meteorology, doi: 10.1155/2013/129642.

    Google Scholar 

  • Hu, M., and M. Xue, 2007: Impact of configurations of rapid intermittent assimilation of WSR-88D radar data for the 8 May 2003 Oklahoma City tornadic thunderstorm case. Mon. Wea. Rev., 135, 507–525.

    Article  Google Scholar 

  • Hu, M., M. Xue, and K. Brewster, 2006a: 3DVAR and cloud analysis with WSR-88D Level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Wea. Rev., 134, 675–698.

    Article  Google Scholar 

  • Hu, M., M. Xue, J. Gao, and K. Brewster, 2006b: 3DVAR and cloud analysis with WSR-88D Level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part II: Impact of radial velocity analysis via 3DVAR. Mon. Wea. Rev., 134, 699–721.

    Article  Google Scholar 

  • Janjić, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118, 1429–1443.

    Article  Google Scholar 

  • Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181.

    Article  Google Scholar 

  • Kain, J. S., and Coauthors, 2010: Assessing advances in the assimilation of radar data and other mesoscale observations within a collaborative forecasting-research environment. Wea. Forecasting, 25, 1510–1521.

    Article  Google Scholar 

  • Liu, H., J. Anderson, and Y. H. Kuo, 2012a: Improved analyses and forecasts of Hurricane Ernesto’s genesis using radio occultation data in an ensemble filter assimilation system. Mon. Wea. Rev., 140, 151–166.

    Article  Google Scholar 

  • Liu, H. Y., J. S. Xue, J. F. Gu, and H. M. Xu, 2012b: Radar data assimilation of the GRAPES model and experimental results in a typhoon case. Adv. Atmos. Sci., 29, 344–358, doi: 10.1007/s00376-011-1063-y.

    Article  Google Scholar 

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102, 16 663–16 682.

    Article  Google Scholar 

  • Powers, J. G., and K. Gao, 2000: Assimilation of DMSP and TOVS satellite soundings in a mesoscale model. J. Appl. Meteor., 39, 1727–1741.

    Article  Google Scholar 

  • Roberts, N. M., and H. W. Lean 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 78–97.

    Article  Google Scholar 

  • Ruggiero, F. H., K. D. Sashegyi, R. V. Madala, and S. Raman, 1996: The use of surface observations in four-dimensional data assimilation using a mesoscale model. Mon. Wea. Rev., 124, 1018–1033.

    Article  Google Scholar 

  • Schenkman, A. D., M. Xue, A. Shapiro, K. Brewster, and J. D. Gao, 2011a: The analysis and prediction of the 8–9 May 2007 Oklahoma tornadic mesoscale convective system by assimilating WSR-88D and CASA radar data using 3DVAR. Mon. Wea. Rev., 139, 224–246.

    Article  Google Scholar 

  • Schenkman, A. D., M. Xue, A. Shapiro, K. Brewster, and J. D. Gao, 2011b: Impact of CASA radar and Oklahoma Mesonet data assimilation on the analysis and prediction of tornadic mesovortices in an MCS. Mon. Wea. Rev., 139, 3422–3445.

    Article  Google Scholar 

  • Shen, Y., P. Zhao, Y. Pan, and J. J. Yu, 2014: A high spatiotemporal gauge-satellite merged precipitation analysis over China. J. Geophys. Res., 119, 3063–3075.

    Google Scholar 

  • Sheng, C., S. Gao, and M. Xue, 2006: Short-range prediction of a heavy precipitation event by assimilating Chinese CINRADSA radar reflectivity data using complex cloud analysis. Meteor. Atmos. Phys., 94, 167–183.

    Article  Google Scholar 

  • Stauffer, D. R., N. L. Seaman, and F. S. Binkowski, 1991: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part II: Effects of data assimilation within the planetary boundary layer. Mon. Wea. Rev., 119, 734–754.

    Article  Google Scholar 

  • Stratman, D. R., M. C. Coniglio, S. E. Koch, and M. Xue, 2013: Use of multiple verification methods to evaluate forecasts of convection from hot-and cold-start convection-allowing models. Wea. Forecasting, 28, 119–138.

    Article  Google Scholar 

  • Sun, J. Z., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 1642–1661.

    Article  Google Scholar 

  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095–5115.

    Article  Google Scholar 

  • Xiao, Q. N., Y. H. Kuo, J. Z. Sun, W. C. Lee, D. M. Barker, and E. Lim, 2007: An approach of radar reflectivity data assimilation and its assessment with the inland QPF of Typhoon Rusa (2002) at landfall. J. Appl. Meteor. Climatol., 46, 14–22.

    Article  Google Scholar 

  • Xue, M., D. H. Wang, J. D. Gao, K. Brewster, and K. K. Droegemeier, 2003: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteor. Atmos. Phys., 82, 139–170.

    Article  Google Scholar 

  • Xue, M., M. Hu, and A. D. Schenkman, 2014: Numerical prediction of the 8 May 2003 Oklahoma City tornadic supercell and embedded tornado using ARPS with the assimilation of WSR-88D data. Wea. Forecasting, 29, 39–62.

    Article  Google Scholar 

  • Zhao, K., and M. Xue, 2009: Assimilation of coastal Doppler radar data with the ARPS 3DVAR and cloud analysis for the prediction of Hurricane Ike (2008). Geophys. Res. Lett., 36, L12803, doi:10.1029/2009GL038658.

    Article  Google Scholar 

  • Zhao, Q. Y., and Y. Jin, 2008: High-resolution radar data assimilation for hurricane Isabel (2003) at landfall. Bull. Amer. Meteor. Soc., 89, 1355–1372.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuanjie Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, T., Kong, F., Chen, X. et al. Evaluation of radar and automatic weather station data assimilation for a heavy rainfall event in southern China. Adv. Atmos. Sci. 32, 967–978 (2015). https://doi.org/10.1007/s00376-014-4155-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-014-4155-7

Key words

Navigation