Advertisement

Advances in Atmospheric Sciences

, Volume 32, Issue 6, pp 831–838 | Cite as

Projections of the advance in the start of the growing season during the 21st century based on CMIP5 simulations

  • Jiangjiang Xia
  • Zhongwei Yan
  • Gensuo Jia
  • Heqing Zeng
  • Philip Douglas Jones
  • Wen Zhou
  • Anzhi Zhang
Article

Abstract

It is well-known that global warming due to anthropogenic atmospheric greenhouse effects advanced the start of the vegetation growing season (SOS) across the globe during the 20th century. Projections of further changes in the SOS for the 21st century under certain emissions scenarios (Representative Concentration Pathways, RCPs) are useful for improving understanding of the consequences of global warming. In this study, we first evaluate a linear relationship between the SOS (defined using the normalized difference vegetation index) and the April temperature for most land areas of the Northern Hemisphere for 1982–2008. Based on this relationship and the ensemble projection of April temperature under RCPs from the latest state-of-the-art global coupled climate models, we show the possible changes in the SOS for most of the land areas of the Northern Hemisphere during the 21st century. By around 2040–59, the SOS will have advanced by −4.7 days under RCP2.6, −8.4 days under RCP4.5, and −10.1 days under RCP8.5, relative to 1985–2004. By 2080–99, it will have advanced by −4.3 days under RCP2.6, −11.3 days under RCP4.5, and −21.6 days under RCP8.5. The geographic pattern of SOS advance is considerably dependent on that of the temperature sensitivity of the SOS. The larger the temperature sensitivity, the larger the date-shift-rate of the SOS.

Key words

start of growing season (SOS) normalized difference vegetation index (NDVI) temperature sensitivity Representative Concentration Pathways (RCPs) CMIP5 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, X. Q., and W. F. Pan, 2002: Relationships among phenological growing season, time-integrated normalized difference vegetation index and climate forcing in the temperate region of eastern China. Int. J. Climatol., 22, 1781–2002.CrossRefGoogle Scholar
  2. Chmielewski, F. M., A. Muller, and E. Bruns, 2004: Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agric. Forest Meteor., 121, 69–78.CrossRefGoogle Scholar
  3. Cong, N., T. Wang, H. J. Nan, Y. C. Ma, X. H. Wang, R. B. Myneni, and S. L. Piao, 2013: Changes in satellite-derived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010: A multimethod analysis. Global Change Biol., 19, 881–891.CrossRefGoogle Scholar
  4. Cubasch, U., and Coauthors, 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, J. T. Houghton et al., Eds., Cambridge University Press, Cambridge, UK., 525–582.Google Scholar
  5. Dai, J. H., H. J. Wang, and Q. S. Ge, 2013: Multiple phenological responses to climate change among 42 plant species in Xi’an, China. Int. J. Biometeor., 57, 749–758.CrossRefGoogle Scholar
  6. Dai, J. H., H. J. Wang, and Q. S. Ge, 2014: The spatial pattern of leaf phenology and its response to climate change in China. Int. J. Biometeor., 58, 521–528.CrossRefGoogle Scholar
  7. Fitter, A. H., and R. S. R. Fitter, 2002: Rapid changes in flowering time in British plants. Science, 296, 1689–1691.CrossRefGoogle Scholar
  8. Ge, Q. S., H. J. Wang, and J. H. Dai, 2014a: Simulating changes in the leaf unfolding time of 20 plant species in China over the twenty-first century. Int. J. Biometeor., 58(4), 473–484.CrossRefGoogle Scholar
  9. Ge, Q. S., H. J. Wang, T. Rutishauser, and J. H. Dai, 2014b: Phenological response to climate change in China: A meta-analysis. Global Change Biol., doi: 10.1111/gcb.12648.Google Scholar
  10. Gillett, N. P., F. W. Zwiers, A. J. Weaver, G. C. Hegerl, M. R. Allen, and P. A. Stott, 2002: Detecting anthropogenic in-fluence with a multi-model ensemble. Geophys. Res. Lett., 29(20), 31-1–31-4, doi: 10.1029/2002GL015836.CrossRefGoogle Scholar
  11. Gleckler, P. J., K. E. Taylor, and C. Doutriaux, 2008: Performance metrics for climate models. J. Geophys. Res., 113, doi: 10.1029/2007JD008972.Google Scholar
  12. Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grid of monthly climatic observations-the CRU TS3.10 Dataset. Int. J. Climatol., 34, 623–642.CrossRefGoogle Scholar
  13. Hegerl, G. C., and Coauthors, 2007: Understanding and attributing climate change. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 663–745.Google Scholar
  14. IPCC, 2001: Climate Change 2001: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change, J. J. Mccarthy et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1032 pp.Google Scholar
  15. IPCC, 2013: Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.Google Scholar
  16. Jeong, S. J., C. H. Ho, H. J. Gim, and M. E. Brown, 2011: Phenology shifts at start vs. end of growing season in temperature vegetation over the Northern Hemisphere for the period 1982–2008. Global Change Biology, 17, 2385–2399, doi: 10.1111/j.1365-2486.2011.02397.x.CrossRefGoogle Scholar
  17. Kharin, V. V., F. W. Zwiers, X. B. Zhang, and G. C. Hegerl, 2007: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Climate, 20, 1419–1444.CrossRefGoogle Scholar
  18. Knutti, R., 2008: Should we believe model predictions of future climate change? Philosophical Transactions of the Royal Society A, 366, 4647–4664, doi: 10.1098/rsta.2008.0169.CrossRefGoogle Scholar
  19. Knutti, R., and J. Sedlacek, 2013: Robustness and uncertainties in the new CMIP5 climate model projections. Nature Climate Change, 3, 369–373, doi: 10.1038/nclimate1716.CrossRefGoogle Scholar
  20. Knutti, R., and Coauthors, 2008: A review of uncertainties in global temperature projections over the twenty-first century. J. Climate, 21, 2651–2663, doi: 10.1175/2007JCLI2119.1.CrossRefGoogle Scholar
  21. Linderholm, H. W., 2006: Growing season changes in the last century. Agric. Forest Meteor., 137, 1–14, doi: 10.1016/j.agrformet.2006.03.006.CrossRefGoogle Scholar
  22. Matsumoto, K., T. Ohta, M. Irasawa, and T. Nakamura, 2003: Climate change and extension of the Ginkgo biloba L. growing season in Japan. Global Change Biology, 9, 1634–1642, doi: 10.1046/j.1529-8817.2003.00688.x.CrossRefGoogle Scholar
  23. McWilliams, J. C., 2007: Irreducible imprecision in atmospheric and oceanic simulations. Proc. Natl. Acad. Sci. USA, 104, 8709–8713, doi: 10.1073/pnas.0702971104.CrossRefGoogle Scholar
  24. Menzel, A., and P. Fabian, 1999: Growing season extended in Europe. Nature, 397, 659.CrossRefGoogle Scholar
  25. Meehl, G. A., and Coauthors, 2007: Global Climate Projections. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon et al., Eds, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 747–845.Google Scholar
  26. Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747–756, doi: 10.1038/nature08823.CrossRefGoogle Scholar
  27. Piao, S. L., J. Y. Fang, L. M. Zhou, P. Ciais, and B. Zhu, 2006: Variations in satellite-derived phenology in China’s temperate vegetation. Global Change Biology, 12, 672–685, doi: 10.1111/j.1365-2486.2006.01123.x.CrossRefGoogle Scholar
  28. Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 589–662.Google Scholar
  29. Reichler, T., and J. Kim, 2008: How well do coupled models simulate today’s climate? Bull. Amer. Meteor. Soc., 89, 303–311, doi: 10.1175/BAMS-89-3-303.CrossRefGoogle Scholar
  30. Shen, M. G., and Coauthors, 2014: Earlier-Season vegetation has greater temperature sensitivity of spring phenology in northern hemisphere. Plos One, 9(2), e88178, doi: 10.1371/journal.pone.0088178.CrossRefGoogle Scholar
  31. Slayback, D. A., J. E. Pinzon, S. O. Los, and C. J. Tucker, 2003: Northern hemisphere photosynthetic trends 1982–99. Global Change Biology, 9(1), 1–15, doi: 10.1046/j.1365-2486.2003.00507.x.CrossRefGoogle Scholar
  32. Sparks, T., 2000: The long-term phenology of woodland species in Britain. Long-term Studies in British Woodland, Vol. 34, English Nature Science Series, K. J. Kirby and M. D. Morecroft, Eds., 98–105.Google Scholar
  33. Sparks, T. H., and A. Menzel, 2002: Observed changes in seasons: An overview. Int. J. Climatol., 22, 1715–1725, doi: 10.1002/joc.821.CrossRefGoogle Scholar
  34. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498, doi: 10.1175/BAMS-D-11-00094.1.CrossRefGoogle Scholar
  35. Tebaldi, C., and R. Knutti, 2007: The use of the multi-model ensemble in probabilistic climate projections. Philosophical Transactions of the Royal Society A, 365, 2053–2075, doi: 10.1098/rsta.2007.2076.CrossRefGoogle Scholar
  36. Tucker, C. J., J. E. Pinzon, M. E. Brown, D. A. Slayback, E. W. Pak, R. Mahoney, E. F. Vermote, and N. E. Saleous, 2005: An extended AVHRR 8 km NDVI data set compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens., 26, 4485–4498.CrossRefGoogle Scholar
  37. Wang, H. J., J. H. Dai, J. Z. Zheng, and Q. S. Ge, 2014: Temperature sensitivity of plant phenology in temperate and subtropical regions of China from 1850–2009. Int. J. Climatol., doi: 10.1002/joc.4026.Google Scholar
  38. Xia, J. J., Z. W. Yan, and P. L. Wu, 2013: Multidecadal variability in local growing season during 1901–2009. Climate Dyn., 41, 295–305.CrossRefGoogle Scholar
  39. Zeng, H. Q., G. S. Jia, and H. Epstein, 2011: Recent changes in phenology over the northern high latitudes detected from multi-satellite data. Environ. Res. Lett., 6(4), 045508, doi: 10.1088/1748-9326/6/4/045508.CrossRefGoogle Scholar
  40. Zhou, T. J., and R. C. Yu, 2006: Twentieth century surface air temperature over china and the globe simulated by coupled climate models. J. Climate., 19(22), 5843–5858.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jiangjiang Xia
    • 1
  • Zhongwei Yan
    • 1
  • Gensuo Jia
    • 1
  • Heqing Zeng
    • 2
  • Philip Douglas Jones
    • 3
    • 4
  • Wen Zhou
    • 5
  • Anzhi Zhang
    • 1
  1. 1.Key Laboratory of Regional Climate-Environment for East Asia, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Ministry of Environmental Protection of Jiuzhaigou CountrySichuanChina
  3. 3.Climatic Research UnitUniversity of East AngliaNorwichUK
  4. 4.Center of Excellence for Climate Change Research and Department of MeteorologyKing Abdulaziz UniversityJeddahSaudi Arabia
  5. 5.Guy Carpenter Asia-Pacific Climate Impact Centre, School of Energy and EnvironmentCity University of Hong KongHong KongChina

Personalised recommendations