Skip to main content
Log in

A multi-scale urban atmospheric dispersion model for emergency management

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

To assist emergency management planning and prevention in case of hazardous chemical release into the atmosphere, especially in densely built-up regions with large populations, a multi-scale urban atmospheric dispersion model was established. Three numerical dispersion experiments, at horizontal resolutions of 10 m, 50 m and 3000 m, were performed to estimate the adverse effects of toxic chemical release in densely built-up areas. The multi-scale atmospheric dispersion model is composed of the Weather Forecasting and Research (WRF) model, the Open Source Field Operation and Manipulation software package, and a Lagrangian dispersion model. Quantification of the adverse health effects of these chemical release events are given by referring to the U.S. Environmental Protection Agency’s Acute Exposure Guideline Levels. The wind fields of the urban-scale case, with 3 km horizontal resolution, were simulated by the Beijing Rapid Update Cycle system, which were utilized by the WRF model. The sub-domain-scale cases took advantage of the computational fluid dynamics method to explicitly consider the effects of buildings. It was found that the multi-scale atmospheric dispersion model is capable of simulating the flow pattern and concentration distribution on different scales, ranging from several meters to kilometers, and can therefore be used to improve the planning of prevention and response programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acquesta, A. D., E. Y. Sanchez, A. Porta, and P.M. Jocovkis, 2011: A method for computing the damage level due to the exposure to an airborne chemical with a time-varying concentration. Risk Analysis, 31(9), 1451–1469.

    Article  Google Scholar 

  • Baik, J. J., S. B. Park, and J. J. Kim, 2009: Urban flow and dispersion simulation using a CFD model coupled to a mesoscale model. J. Appl. Meteor. Climatol., 48, 1667–1681.

    Article  Google Scholar 

  • Berrouk, A. S., D. E. Stock, D. Laurence, and J. J. Riley, 2008: Heavy particle dispersion from a point source in turbulent pipe flow. Int. J. Multiphase Flow, 34(10), 916–923.

    Article  Google Scholar 

  • Bowonder, B., and T. Miyake, 1988: Managing hazardous facilities: Lessons from the Bhopal accident. J. Hazard. Mater., 19(3), 237–269.

    Article  Google Scholar 

  • Chen, B. C., S. H. Liu, Y. C. Miao, S. Wang, and Y. Li, 2013: Construction and validation of an urban area flow and dispersion model on building scales. Acta Meteorologica Sinica., 27(6), 923–941.

    Article  Google Scholar 

  • Fang, X. Y., and Coauthors, 2004: The multi-scale numerical modeling system for research on the relationship between urban planning and meteorological environment. Adv. Atmos. Sci., 21(1), 103–112, doi: 10.1007/BF02915684.

    Article  Google Scholar 

  • Ferziger, J. H., and M. Peric, 2001: Computational Methods for Fluid Dynamics. 3rd ed., Springer, 188–202.

    Google Scholar 

  • Fitch, J. P., E. Raber, and R. R. Imbro, 2003: Technology challenges in responding to biological or chemical attacks in the civilian sector. Science, 302, 1350–1354.

    Article  Google Scholar 

  • Fu, W., H. Fu, K. Skøtt, and M. Yang, 2008: Modeling the spill in the Songhua River after the explosion in the petrochemical plant in Jilin. Environ. Sci. Pollut. Res., 15(3), 178–181.

    Article  Google Scholar 

  • Hanna, S. R., O. R. Hansen, M. Ichard, and D. Strimaitis, 2009: CFD model simulation of dispersion from chlorine railcar release in industrial and urban areas. Atmos. Environ., 43, 262–270.

    Article  Google Scholar 

  • Langner, C., and O. A. Klemm, 2011: A comparison of model performance between AERMOD and AUSTAL2000. J. Air & Waste Manage. Assoc., 61, 640–646.

    Article  Google Scholar 

  • Li, F. Y., J. Bi, L. Huang, C. S. Qu, J. Yang, and Q. M. Bu, 2010: Mapping human vulnerability to chemical accidents in the vicinity of chemical industry parks. Journal of Hazardous Materials, 179, 500–506.

    Article  Google Scholar 

  • Li, L., F. Hu, J. Jiang, and X. Cheng, 2007: An application of the RAMS/FLUENT system on the multi-scale numerical simulation of the urban surface layer—A preliminary study. Adv. Atmos. Sci., 24(2), 271–280, doi: 10.1007/s00376-007-0271-y.

    Article  Google Scholar 

  • Miao, S. G., W. M. Jiang, X. Y. Wang, and W. L. Guo, 2006: Impact assessment of urban meteorology and the atmospheric environment using urban sub-domain planning. Bound.-Layer Meteor., 118, 133–150.

    Article  Google Scholar 

  • Miao, Y. C., S. H. Liu, B. C. Chen, B. H. Zhang, S. Wang, and S. Y. Li, 2013: Simulating urban flow and dispersion in Beijing by coupling a CFD model with the WRF model. Adv. Atmos. Sci., 30(6), 1663–1678, doi: 10.1007/s00376-013-2234-9.

    Article  Google Scholar 

  • Miao, Y. C., S. H. Liu, Y. J. Zheng, S. Wang, and Y. Li, 2014: Numerical study of traffic pollutant dispersion within different street canyon configurations. Adv.Meteor., Article ID 458671, doi:10.1155/2014/458671.

    Google Scholar 

  • Okumura, T., N. Takasu, S. Ishimatsu, S. Miyanoki, A. Mitsuhashi, K. Kumada, K. Tanaka, and S. Hinohara, 1996: Report on 640 victims of the Tokyo subway sarin attack. Annals of Emergency Medicine, 28(2), 129–135.

    Article  Google Scholar 

  • Santiago, J. L., and F. Martñ, 2008: SLP-2D: A new Lagrangian particle model to simulate pollutant dispersion in street canyons. Atmos. Environ., 42, 3927–3936.

    Article  Google Scholar 

  • Stage, S. A., 2004: Determination of acute exposure guideline levels in a dispersion model. Journal of the Air & Waste Management Association, 54, 49–59.

    Article  Google Scholar 

  • Stohl, A., C. Foster, A. Frank, P. Seibert, and G. Wotawa, 2005: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys., 5, 2461–2474.

    Article  Google Scholar 

  • Tewari, M., H. Kusaka, F. Chen, W. J. Coirier, S. Kim, A. A. Wyszogrodzki, and T. T. Warner, 2010: Impact of coupling a microscale computational fluid dynamics model with a mesoscale model on urban scale contaminant transport and dispersion. Atmospheric Research., 96, 656–664.

    Article  Google Scholar 

  • Thompson, R. S., 1993: Building amplification factors for sources near buildings-a wind-tunnel study. Atmos. Environ., 27A(15), 2313–2325.

    Article  Google Scholar 

  • Wang, H., J. Sun, S. Fan, and X. Y. Huang, 2013: Indirect assimilation of radar reflectivity with WRF 3D-Var and its impact on prediction of four summertime convective events. J. Appl. Meteor. Climatol., 52(4), 889–902.

    Article  Google Scholar 

  • Wilson, J. D., and B. L. Sawford, 1996: Review of Lagrangian stochastic models for trajectories in the turbulent atmosphere. Bound-Layer Meteor., 78, 191–210.

    Article  Google Scholar 

  • Zhang, Z., and Q. Chen, 2007: Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed spaces. Atmos. Environ., 41(25), 5236–5248.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhua Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, Y., Liu, S., Zheng, H. et al. A multi-scale urban atmospheric dispersion model for emergency management. Adv. Atmos. Sci. 31, 1353–1365 (2014). https://doi.org/10.1007/s00376-014-3254-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-014-3254-9

Key words

Navigation