Advertisement

Advances in Atmospheric Sciences

, Volume 32, Issue 1, pp 32–63 | Cite as

On the radiative properties of ice clouds: Light scattering, remote sensing, and radiation parameterization

  • Ping Yang
  • Kuo-Nan Liou
  • Lei Bi
  • Chao Liu
  • Bingqi Yi
  • Bryan A. Baum
Article

Abstract

Presented is a review of the radiative properties of ice clouds from three perspectives: light scattering simulations, remote sensing applications, and broadband radiation parameterizations appropriate for numerical models. On the subject of light scattering simulations, several classical computational approaches are reviewed, including the conventional geometric-optics method and its improved forms, the finite-difference time domain technique, the pseudo-spectral time domain technique, the discrete dipole approximation method, and the T-matrix method, with specific applications to the computation of the single-scattering properties of individual ice crystals. The strengths and weaknesses associated with each approach are discussed. With reference to remote sensing, operational retrieval algorithms are reviewed for retrieving cloud optical depth and effective particle size based on solar or thermal infrared (IR) bands. To illustrate the performance of the current solar- and IR-based retrievals, two case studies are presented based on spaceborne observations. The need for a more realistic ice cloud optical model to obtain spectrally consistent retrievals is demonstrated. Furthermore, to complement ice cloud property studies based on passive radiometric measurements, the advantage of incorporating lidar and/or polarimetric measurements is discussed. The performance of ice cloud models based on the use of different ice habits to represent ice particles is illustrated by comparing model results with satellite observations. A summary is provided of a number of parameterization schemes for ice cloud radiative properties that were developed for application to broadband radiative transfer submodels within general circulation models (GCMs). The availability of the single-scattering properties of complex ice habits has led to more accurate radiation parameterizations. In conclusion, the importance of using nonspherical ice particle models in GCM simulations for climate studies is proven.

Key words

ice clouds light scattering remote sensing radiative property parameterization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnott, W. P., Y. Y. Dong, and J. Hallett, 1995: Extinction efficiency in the infrared (2–18 μm) of laboratory ice clouds: Observations of scattering minima in the Christian bands of ice. Appl. Opt., 34, 541–551.Google Scholar
  2. Baran, A. J., 2009: A review of the light scattering properties of cirrus. J. Quant. Spectrosc. Radiat. Transfer, 110, 1239–1260.Google Scholar
  3. Baran, A. J., 2012: From the single-scattering properties of ice crystals to climate prediction: A way forward. Atmos. Res., 112, 45–69.Google Scholar
  4. Baran, A. J., and P. N. Francis, 2004: On the radiative properties of cirrus cloud at solar and thermal wavelengths: A test of model consistency using high-resolution airborne radiance measurements. Quart. J. Roy. Meteor. Soc., 130, 763–778.Google Scholar
  5. Baran, A. J., and L. C.-Labonnote, 2006: On the reflection and polarisation properties of ice cloud. J. Quant. Spectrosc. Radiat. Transfer, 100, 41–54.Google Scholar
  6. Baran, A. J., P. Yang, and S. Havemann, 2001a: Calculation of the single-scattering properties of randomly oriented hexagonal ice columns: A comparison of the T-matrix and the finitedifference time-domain methods. Appl. Opt., 40, 4376–4386.Google Scholar
  7. Baran, A. J., P. N. Francis, S. Havemann, and P. Yang, 2001b: A study of the absorption and extinction properties of hexagonal ice columns and plates in random and preferred orientation, using exact T-matrix theory and aircraft observations of cirrus. J. Quant. Spectrosc. Radiat. Transfer, 70, 505–518.Google Scholar
  8. Baran, A. J., P. Hill, K. Furtado, P. Field, and J. Manners, 2014: A coupled cloud Physics-Radiation parameterization of the bulk optical properties of cirrus and its impact on the met office unified model global atmosphere 5.0 configuration. J. Climate, doi: 10.1175/JCLI-D-13-00700.1.Google Scholar
  9. Barber, P. W., and S. C. Hill, 1990: Light Scattering by Particles: Computational Methods. World Scientific, 261 pp.Google Scholar
  10. Baum, B. A., A. J. Heymsfield, P. Yang, and S. T. Bedka, 2005a: Bulk scattering properties for the remote sensing of ice clouds. Part 1: Microphysical data and models. J. Appl. Meteor., 44, 1885–1895.Google Scholar
  11. Baum, B. A., P. Yang, A. J. Heymsfield, S. Platnick, M. D. King, and S. T. Bedka, 2005b: Bulk scattering properties for the remote sensing of ice clouds. Part 2: Narrowband models. J. Appl. Meteor., 44, 1896–1911.Google Scholar
  12. Baum, B. A., P. Yang, S. L. Nasiri, A. K. Heidinger, A. J. Heymsfield, and J. Li, 2007: Bulk scattering properties for the remote sensing of ice clouds. Part III: High resolution spectral models from 100 to 3250 cm−1. J. Appl. Meteor. Climate, 46, 423–434.Google Scholar
  13. Baum, B. A., P. Yang, Y.-X. Hu, and Q. Feng, 2010: The impact of ice particle roughness on the scattering phase matrix. J. Quant. Spectrosc. Radiant. Transfer, 111, 2534–2549.Google Scholar
  14. Baum, B. A., P. Yang, A. J. Heymsfield, C. Schmitt, Y. Xie, A. Bansemer, Y. X. Hu, and Z. Zhang, 2011: Improvements to shortwave bulk scattering and absorption models for the remote sensing of ice clouds. J. Appl. Meteor. Clim., 50, 1037–1056.Google Scholar
  15. Baum, B. A., W. P. Menzel, R. A. Frey, D. Tobin, R. E. Holz, S. A. Ackerman, A. K. Heidinger, and P. Yang, 2012: MODIS cloud top property refinements for Collection 6. J. Appl. Meteor. Climate, 51, 1145–1163.Google Scholar
  16. Baum, B. A., P. Yang, A. J. Heymsfield, A. Bansemer, A. Merrelli, C. Schmitt, and C. Wang, 2014: Ice cloud bulk single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 μm. J. Quant. Spectrosc. Radiant. Transfer, 146, 123–139.Google Scholar
  17. Bi, L., and P. Yang, 2014a: Accurate simulation of the optical properties of atmospheric ice crystals with invariant imbedding T-matrix method. J. Quant. Spectrosc. Radiat. Transfer, 138, 17–35.Google Scholar
  18. Bi, L., and P. Yang, 2014b: High-frequency extinction efficiencies of spheroids: Rigorous T-matrix solutions and semi-empirical approximations. Optics Express, 22, 10270–10293.Google Scholar
  19. Bi, L., P. Yang, and G. W. Kattawar, 2010: Edge-effect contribution to the extinction of light by dielectric disks and cylindrical particles. Appl. Opt., 49, 4641–4646.Google Scholar
  20. Bi, L., P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, 2011a: Diffraction and external reflection by dielectric faceted particles. J. Quant. Spectrosc. Radiat. Transfer, 112, 163–173.Google Scholar
  21. Bi, L., P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, 2011b: Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method. J. Quant. Spectrosc. Radiat. Transfer, 112, 1492–1508.Google Scholar
  22. Bi, L., P. Yang, G. W. Kattawar, and M. I. Mishchenko, 2013a: A numerical combination of extended boundary condition method and invariant imbedding method to light scattering by large spheroids and cylinders. J. Quant. Spectrosc. Radiat. Transfer, 123, 17–22.Google Scholar
  23. Bi, L., P. Yang, G. W. Kattawar, and M. I. Mishchenko, 2013b: Efficient implementation of the invariant imbedding T-matrix method and the separation of variables method applied to large nonspherical inhomogeneous particles. J. Quant. Spectrosc. Radiat. Transfer, 116, 169–183.Google Scholar
  24. Bi, L., P. Yang, C. Liu, B. Yi, B. A. Baum, B. van Diedenhoven, and H. Iwabuchi, 2014: Assessment of the accuracy of the conventional ray-tracing technique: Implications in remote sensing and radiative transfer involving ice clouds. J. Quant. Spectrosc. Radiat. Transfer, 146, 158–174.Google Scholar
  25. Bohren, C. F., and D. R. Huffman, 1983: Absorption and Scattering of Light by Small Particles. Wiley, 544 pp.Google Scholar
  26. Borghese, F., P. Denti, and R. Saija, 2007: Scattering from Model Nonspherical Particles. 2nd ed., Springer, 348 pp.Google Scholar
  27. Born, M., and E. Wolf, 1959: Principles of Optics. Pergamon Press, Oxford, 936 pp.Google Scholar
  28. Borovoi, A. G., and I. A. Grishin, 2003: Scattering matrices for large ice crystal particles. Journal of the Optical Society of America A, 20, 2071–2080.Google Scholar
  29. Buriez, J. C., F. Parol, C. Cornet, and M. Doutriaux-Boucher, 2005: An improved derivation of the top-of-atmosphere albedo from POLDER/ADEOS-2: Narrowband albedos. J. Geophys. Res., 110, D05202, doi:10.1029/2004JD005243.Google Scholar
  30. Cai, Q., and K. N. Liou, 1982: Polarized light scattering by hexagonal ice crystals: Theory. Appl. Opt., 21, 3569–3580.Google Scholar
  31. Chen, G., P. Yang, and G. W. Kattawar, 2008: Application of the pseudospectral time-domain method to the scattering of light by nonspherical particles. Journal of the Optical Society of America A, 25, 785–790.Google Scholar
  32. Chepfer, H., G. Brogniez, and Y. Fouquart, 1998: Cirrus clouds’ microphysical properties deduced from POLDER observations. J. Quant. Spectrosc. Radiat. Transfer, 60, 375–390.Google Scholar
  33. Chepfer, H., P. Goloub, J. Riedi, J. F. de Haan, and J. W. Hovenier, 2001: Ice crystal shapes in cirrus clouds derived from POLDER-1/ADEOS-1. J. Geophys. Res., 106, 7955–7966.Google Scholar
  34. Chiriaco, M., H. Chepfer, V. Noel, A. Delaval, M. Haeffelin, P. Dubuisson, and P. Yang, 2004: Improving retrievals of cirrus cloud particle size coupling lidar and three-channel radiometric techniques. Mon. Wea. Rev., 32, 1684–1700.Google Scholar
  35. Cho, H.-M., P. Yang, G. W. Kattawar, S. L. Nasiri, Y. Hu, P. Minnis, C. Tepte, and D. Winker, 2008: Depolarization ratio and attenuated backscatter for nine cloud types: Analyses based on collocated CALIPSO lidar and MODIS measurements. Optics Express, 16, 3931–3948.Google Scholar
  36. Cho, H.-M., S. L. Nasiri, and P. Yang, 2009: Application of CALIOP measurements to the evaluation of cloud phase derived from MODIS infrared channels. J. Appl. Meteor. Climate, 48, 2169–2180.Google Scholar
  37. Chou, M.-D., K.-T. Lee, and P. Yang, 2002: Parameterization of shortwave cloud optical properties for a mixture of ice particle habits for use in atmospheric models. J. Geophys. Res., 107(D21), AAC 22-1–AAC 22-9, doi: 10.1029/2002JD002061.Google Scholar
  38. C.-Labonnote, L., G. Brogniez, J. C. Buriez, and M. Doutriaux-Boucher, 2001: Polarized light scattering by inhomogeneous hexagonal monocrystals: Validation with ADEOS-POLDER measurements. J. Geophys. Res., 106, 12139–12153.Google Scholar
  39. Cole, B. H., P. Yang, B. A. Baum, J. Riedi, L. C.-Labonnote, F. Thieuleux, and S. Platnick, 2013: Comparison of PARASOL observations with polarized reflectances simulated using different ice habit mixtures. J. Appl. Meteor. Climatol., 52, 186–196.Google Scholar
  40. Cole, B. H., P. Yang, B. A. Baum, J. Riedi, and L. C.-Labonnote, 2014: Ice particle habit and surface roughness derived from PARASOL polarization measurements. Atmos. Chem. Phys., 14, 3739–3750.Google Scholar
  41. Debye, P., 1915: Zerstreuung von Röntgenstrahlen. Ann. Phys., 351, 809–819.Google Scholar
  42. Deschamps, P., F. M. Breon, M. Leroy, A. Podaire, A. Bricaud, J. C. Buriez, and G. Seze, 1994: The POLDER mission: Instrument characteristics and scientific objectives. IEEE Trans. Geosci. Remote Sens., 32, 598–615.Google Scholar
  43. Dessler, A. E., and P. Yang, 2003: The distribution of tropical thin cirrus clouds inferred from Terra MODIS data. J. Climate, 16, 1241–1247.Google Scholar
  44. DeVoe, H., 1964: Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction. J. Chem. Phys., 41, 393–400.Google Scholar
  45. Doicu, A., T. Wriedt, and Y. Eremin, 2006: Light Scattering by Systems of Particles. Springer, 324 pp.Google Scholar
  46. Draine, B. T., and P. J. Flatau, 1994: Discrete dipole approximation for scattering calculations. Journal of the Optical Society of America A, 11, 1491–1499.Google Scholar
  47. Ebert, E. E., and J. A. Curry, 1992: A parameterization of ice cloud optical properties for climate models. J. Geophys. Res., 97, 3831–3836.Google Scholar
  48. Ebert, E. E., and J. A. Curry, 1993: An intermediate one-dimensional thermodynamic sea ice model for investigating ice-atmosphere interactions. J. Geophys. Res., 98, 10 085–10 109.Google Scholar
  49. Edwards, J. M., S. Havemann, J.-C. Thelen, and A. J. Baran, 2007: A new parameterization for the radiative properties of ice crystals: Comparison with existing schemes and impact in a GCM. Atmos. Res., 83, 19–35.Google Scholar
  50. Field, P. R., A. J. Heymsfield, and A. Bansemer, 2006: Shattering and particle interarrival times measured by optical array probes in clouds. J. Atmos. Oceanic Tech., 23, 1357–1371.Google Scholar
  51. Foot, J. S., 1988: Some observations of the optical properties of clouds. Part II: Cirrus. Quart. J. Roy. Meteor. Soc., 114, 145–164.Google Scholar
  52. Foster, M. J., and A. K. Heidinger, 2013: PATMOS-x: Results from a diurnally corrected 30-yr satellite cloud climatology. J. Climate, 26, 414–425.Google Scholar
  53. Francis, P. N., 1995: Some aircraft observations of the scattering properties of ice crystals. J. Atmos. Sci., 52, 1142–1154, doi:10.1175/1520-0469(1995)052<1142:SAOOTS>2.0.CO;2.Google Scholar
  54. Fu, Q., 1996: An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Climate, 9, 2058–2082.Google Scholar
  55. Fu, Q., 2007: A new parameterization of an asymmetry factor of cirrus clouds for climate models. J. Atmos. Sci., 64, 4140–4150.Google Scholar
  56. Fu, Q., and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 2008–2025.Google Scholar
  57. Fu, Q., W. B. Sun, and P. Yang, 1999: Modeling of scattering and absorption by nonspherical cirrus ice particles at thermal infrared wavelengths. J. Atmos. Sci., 56, 2937–2947.Google Scholar
  58. Gao, B.-C., and Y. J. Kaufman, 1995: Selection of 1.375 μm MODIS channel for remote sensing of cirrus clouds and stratospheric aerosols from space. J. Atmos. Sci., 52, 4231–4237.Google Scholar
  59. Gao, B.-C., A. F. H. Goetz, and W. J. Wiscombe, 1993: Cirrus cloud detection from airborne imaging spectrometer data using the 1.38 μm water vapor band. Geophys. Res. Lett., 20, 301–304.Google Scholar
  60. Gao, B.-C., Y. J. Kaufman, W. Han, R. R. Li, and W. J. Wiscombe, 1998: Correction of thin cirrus path radiance in the 0.4–1.0 μm spectral region using the sensitive 1.375-μm channels to retrieve cirrus cloud reflectances from aircraft and satellite data. J. Geophys. Res., 103, 3 2169–3 2176.Google Scholar
  61. Gao, B.-C., P. Yang, W. Han, R.-R. Li, and W. Wiscombe, 2002: An algorithm using visible and 1.38-μm channels to retrieve cirrus cloud reflectances from aircraft and satellite data. IEEE Trans. Geosci. Remote Sens., 40, 1659–1668.Google Scholar
  62. Gao, B.-C., K. Meyer, and P. Yang, 2004: A new concept on remote sensing of cirrus optical depth and effective ice particle size using strong water vapor absorption channels near 1.38 and 1.88 μm. IEEE Trans. Geosci. Remote Sens., 42, 1891–1899.Google Scholar
  63. Garnier, A., J. Pelon, P. Dubuisson, M. Faivre, O. Chomette, N. Pascal, and D. P. Kratz, 2012: Retrieval of cloud properties using CALIPSO Imaging Infrared Radiometer. Part I: Effective emissivity and optical depth. J. Appl. Meteor. Climatol., 51, 1407–1425.Google Scholar
  64. Garnier, A., and Coauthors, 2013: Retrieval of cloud properties using CALIPSO imaging infrared radiometer. Part II: Effective diameter and ice water path. J. Appl. Meteor. Climate, 52, 2582–2599.Google Scholar
  65. Gayet, J.-F., and Coauthors, 2004: Cirrus cloud microphysical and optical properties at southern and northern midlatitudes during the INCA experiment. J. Geophys. Res., 109, D20206, doi:10.1029/2004JD004803.Google Scholar
  66. Gayet, J.-F., and Coauthors, 2006: Microphysical and optical properties of midlatitude cirrus clouds observed in the southern hemisphere during INCA. Quart. J. Roy. Meteor. Soc., 132, 2719–2748, doi: 10.1256/qj.05.162.Google Scholar
  67. Giraud, V., J. C. Buriez, Y. Fouquart, and F. Parol, 1997: Largescale analysis of cirrus clouds from AVHRR data: Assessment of both a microphysical index and the cloud-top temperature. J. Appl. Meteor., 36, 664–675.Google Scholar
  68. Gu, Y., J. Farrara, K. N. Liou, and C. R. Mechoso, 2003: Parameterization of cloud-radiation processes in the UCLA general circulation model. J. Climate, 16, 3357–3370.Google Scholar
  69. Gu, Y., K. N. Liou, S. C. Ou, and R. Fovell, 2011: Cirrus cloud simulations using WRF with improved radiation parameterization and increased vertical resolution. J. Geophys. Res., 116, D06119, doi:10.1029/2010JD014574.Google Scholar
  70. Hage, J. I., J. M. Greenberg, and R. T. Wang, 1991: Scattering from arbitrary shaped particles: Theory and experiment. Appl. Opt., 30, 1141–1152.Google Scholar
  71. Hansen, J. E., and J. B. Pollack, 1970: Near-infrared light scattering by terrestrial clouds. J. Atmos. Sci., 27, 265–281.Google Scholar
  72. Heidinger, A. K., and M. J. Pavolonis, 2009: Gazing at cirrus clouds for 25 years through a split window. Part I: Methodology. J. Appl. Meteor. Climatol., 48, 1100–1116.Google Scholar
  73. Heidinger, A. K., M. D. Goldberg, D. Tarpley, A. Jelenak, and M. J. Pavolonis, 2005: A new AVHRR cloud climatology. Proc. SPIE, 5658, 197–205.Google Scholar
  74. Hess, M., and M. Wiegner, 1994: COP: A data library of optical properties of hexagonal ice crystals. Appl. Opt., 33, 7740–7746.Google Scholar
  75. Hess, M., P. Koepke, and I. Schult, 1998: Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79, 831–844.Google Scholar
  76. Heymsfield, A. J., K. M. Miller, and J. D. Spinhirne, 1990: The 27–28 October 1986 FIRE IFO cirrus case study: Cloud microstructure. Mon. Wea. Rev., 118, 2313–2328,, doi: http://dx.doi.org/ 10.1175/1520-0493(1990)118<2313:TOFICC>2.0.CO;2.Google Scholar
  77. Heymsfield, A. J., S. Lewis, A. Bansemer, J. Iaquinta, L. M. Miloshevich, M. Kajikawa, C. Twohy, and M. R. Poellot, 2002: A general approach for deriving the properties of cirrus and stratiform ice cloud particles. J. Atmos. Sci., 59, 3–29.Google Scholar
  78. Heymsfield, A. J., C. Schmitt, and A. Bansemer, 2013: Ice cloud particle size distributions and Pressure-Dependent terminal velocities from in situ observations at temperatures from 0° to −86°C. J. Atmos. Sci., 70, 4123–4154.Google Scholar
  79. Hillger, D., and Coauthors, 2013: First-light imagery from Suomi NPP VIIRS. Bull. Amer. Meteor. Soc., 94, 1019–1029.Google Scholar
  80. Hong, G., P. Yang, B. A. Baum, A. J. Heymsfield, and K.-M. Xu, 2009a: Parameterization of shortwave and longwave radiative properties of ice clouds for use in climate models. J. Climate, 22, 6287–6312.Google Scholar
  81. Hong, G., P. Yang, B. A. Baum, A. J. Heymsfield, F. Weng, Q. Liu, G. Heygster, and S. A. Buehler, 2009b: Scattering database in the millimeter and submillimeter wave range of 100–100 GHz for nonspherical ice particles. J. Geophys. Res., 114, D06201, doi:10.1029/2008JD010451.Google Scholar
  82. Houghton, J. T., and G. E. Hunt, 1971: The detection of ice clouds from remote measurements of their emission in the far-infrared. Quart. J. Roy. Meteor. Soc., 97, 1–17.Google Scholar
  83. Hu, Y.-X., and Coauthors, 2009: CALIPSO/CALIOP cloud phase discrimination algorithm. J. Atmos. Ocean. Technol., 26, 2293–2309.Google Scholar
  84. Huang, H.-L, P. Yang, H.-L. Wei, B. A. Baum, Y.-X. Hu, P. Antonelli, and S. A. Ackerman, 2004: Retrieval of ice cloud properties from high spectral resolution infrared observations. IEEE Trans. Geosci, Remote Sens., 42, 842–853.Google Scholar
  85. Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.Google Scholar
  86. Iaquinta, J., H. Isaka, and P. Personne, 1995: Scattering phase function of bullet ice crystals. J. Atmos. Sci., 52, 1401–1413.Google Scholar
  87. Inoue, T., 1985: On the temperature and effective emissivity determination of semitransparent cirrus clouds by bi-spectral measurements in the 10-μm window region. J. Meteor. Soc. Japan, 63, 88–89.Google Scholar
  88. Iwabuchi, H., S. Yamada, S. Katagiri, P. Yang, and H. Okamoto, 2014: Radiative and microphysical properties of cirrus cloud inferred from infrared measurements made by the Moderate Resolution Imaging Spectroradiometer (MODIS). Part I: Retrieval method. J. Appl. Meteor. Climate, 53, 1297–1316.Google Scholar
  89. Jackson, J. D., 1975: Classical Electrodynamics. 2nd ed., Wiley, 880 pp.Google Scholar
  90. Jackson, R. C., and G. M. McFarquhar, 2014: An assessment of the impact of anti-shattering tips and artifact removal techniques on bulk cloud ice microphysical and optical properties measured by the 2D cloud probe. J. Oceanic Atmos. Tech., doi: 10.1175/JTECH-D-14-00018.1.Google Scholar
  91. Jacobowitz, H., 1971: A method for computing the transfer of solar radiation through clouds of hexagonal ice crystals. J. Quant. Spectrosc. Radiat. Transfer, 11, 691–695.Google Scholar
  92. Johnson, B. R., 1988: Invariant imbedding T-matrix approach to electromagnetic scattering. Appl. Opt., 27, 4861–4873.Google Scholar
  93. Kahn, B. H., and Coauthors, 2014: The Atmospheric Infrared Sounder version 6 cloud products. Atmos. Chem. Phys., 14, 399–426.Google Scholar
  94. Kahnert, F. M., 2003: Numerical methods in electromagnetic scattering theory. J. Quant. Spectrosc. Radiat. Transf., 79–80, 775–824.Google Scholar
  95. Kahnert, M., 2013: The T-matrix code Tsym for homogeneous dielectric particles with finite symmetries. J. Quant. Spectrosc. Radiat. Transfer, 123, 67–78.Google Scholar
  96. Karlsson, K.-G., and Coauthors, 2013: CLARA-A1: A cloud, albedo, and radiation dataset from 28 yr of global AVHRR data. Atmos. Chem. Phys., 13, 5351–5367.Google Scholar
  97. Key, J. R., P. Yang, B. A. Baum, and S. L. Nasiri, 2002: Parameterization of shortwave ice cloud optical properties for various particle habits. J. Geophys. Res., 107, AAC 7-1–AAC 7-10, doi:10.1029/2001JD000742.Google Scholar
  98. Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson, and P. J. Rasch, 1998: The national center for atmospheric research community climate model: CCM3. J. Climate, 11, 1131–1149.Google Scholar
  99. Kim, M.-J., 2006: Single scattering parameters of randomly oriented snow particles at microwave frequencies. J. Geophys. Res., 111, D14201, doi:10.1029/2005JD006892.Google Scholar
  100. King, M. D., 1987: Determination of the scaled optical thickness of clouds from reflected solar radiation measurements. J. Atmos. Sci., 44, 1734–1751.Google Scholar
  101. King, M. D., Y. J. Kaufman, W. P. Menzel, and D. Tanre, 1992: Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS). IEEE Trans. Geosci. Remote Sens., 30, 2–27.Google Scholar
  102. King, M. D., S. Platnick, P. Yang, G. T. Arnold, M. A. Gray, J. C. Riedi, S. A. Ackerman, and K. N. Liou, 2004: Remote sensing of liquid water and ice cloud optical thickness, and effective radius in the Arctic: Application of air-borne multispectral MAS data. J. Atmos. and Ocean. Technol., 21, 857–875.Google Scholar
  103. Korolev, A. V., E. G. Emery, J.W. Strapp, S. G. Cober, G. A. Isaac, M. Wasey, and D. Marcotte, 2011: Small ice particles in tropospheric clouds: Fact or artifact? Airborne Icing Instrumentation Evaluation Experiment. Bull. Amer. Meteor. Soc., 92, 967–973.Google Scholar
  104. Korolev, A. V., E. Emery, and K. Creelman, 2013a: Modification and tests of particle probe tips to mitigate effects of ice shattering. J. Atmos. Oceanic Technol., 30, 690–708.Google Scholar
  105. Korolev, A. V., E. F. Emery, J. W. Strapp, S. G. Cober, and G. A. Isaac, 2013b: Quantification of the effects of shattering on airborne ice particle measurements. J. Atmos. Oceanic. Technol., 30, 2527–2553.Google Scholar
  106. Lakhtakia, A., 1992: Strong and weak forms of the method of moments and the coupled dipole method for scattering of time-harmonic electromagnetic-fields. International Journal of Modern Physics A, 3, 583–603.Google Scholar
  107. Lakhtakia, A., V. K. Varadan, and V. V. Varadan, 1984: Iterative extended boundary condition method for scattering by objects of high aspect ratio. Journal of the Acoustical Society of America, 76, 906–912.Google Scholar
  108. Lawson, R. P., 2011: Effects of ice particles shattering on the 2D-S probe. Atmos. Meas. Tech., 4, 1361–1381.Google Scholar
  109. Lee, E. L., S. D. Miller, and F. J. Turk, 2010: The NPOESS VIIRS day/night visible sensor. Bull. Amer. Meteor. Soc., 87, 191–199.Google Scholar
  110. Lee, J., P. Yang, A. Dessler, B.-C. Gao, and S. Platnick, 2009: Distribution and radiative forcing of tropical thin cirrus clouds. J. Atmos. Sci., 66, 3721–3731.Google Scholar
  111. Li, J., and Coauthors, 2005: Retrieval of cloud microphysical properties from MODIS and AIRS. J. Appl. Meteor. 44, 1526–1543.Google Scholar
  112. Liou, K. N., 1972a: Electromagnetic scattering by arbitrarily oriented ice cylinders. Appl. Opt., 11, 667–674.Google Scholar
  113. Liou, K. N., 1972b: Light scattering by ice clouds in the visible and infrared: A theoretical study. J. Atmos. Sci., 29, 524–536.Google Scholar
  114. Liou, K. N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev., 114, 1167–1199.Google Scholar
  115. Liou, K. N., 2002: An Introduction to Atmospheric Radiation. Academic Press, 583 pp.Google Scholar
  116. Liou, K. N., and J. E. Hansen, 1971: Intensity and polarization for single scattering by polydisperse spheres: A comparison of ray optics and Mie theory. J. Atmos. Sci., 28, 995–1004.Google Scholar
  117. Liou, K. N., Y. Takano, and P. Yang, 2000: Light scattering and radiative transfer by ice crystal clouds: Applications to climate research. Chapter 15, Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications, M. I. Mishchenko et al., Eds., Academic Press, 417–449.Google Scholar
  118. Liou, K. N., Y. Takano, P. Yang, and Y. Gu, 2001: Radiative transfer in cirrus clouds: Light scattering and spectral information. Cirrus, D. Lynch et al., Eds., Oxford University Press, New York, 265–296.Google Scholar
  119. Liou, K. N., Y. Takano, and P. Yang, 2010: On geometric optics and surface waves for light scattering by spheres. J. Quant. Spectrosc. Radiat. Transfer, 111, 1980–1989.Google Scholar
  120. Liou, K. N., Y. Takano, and P. Yang, 2011: Light absorption and scattering by aggregates: Application to black carbon and snow grains. J. Quant. Spectrosc. Radiat. Transfer, 112, 1581–1594.Google Scholar
  121. Liu, C., R. L. Panetta, and P. Yang, 2012a: Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200. J. Quant. Spectrosc. Radiat. Transfer, 113, 1728–1740.Google Scholar
  122. Liu, C., L. Bi, R. L. Panetta, P. Yang, and M. A. Yurkin, 2012b: Comparison between the pseudo-spectral time domain method and the discrete dipole approximation for light scattering simulations. Opt. Express, 20, 16763–16776.Google Scholar
  123. Liu, C., P. Yang, P. Minnis, N. Loeb, S. Kato, A. Heymsfield, and C. Schmitt, 2014: A two-habit model for the microphysical and optical properties of ice clouds. Atmos. Chem. Phys. 14, 19 545–19 586.Google Scholar
  124. Liu, Q. H., 1997: The PSTD algorithm: A time-domain method requiring only two cells per wavelength. Microwave Opt. Technol. Lett., 15, 158–165.Google Scholar
  125. Liu, G., 2008: A database of microwave single-scattering properties for nonspherical ice particles. Bull. Amer. Meteor. Soc., 89, 1563–1570.Google Scholar
  126. Logan, N., 1965: Survey of some early studies of the scattering of plane waves by a sphere. Proceedings of the IEEE. Institute of Electrical and Electronics Engineers (IEEE), 53, 773–785.Google Scholar
  127. Lynch, D. K., K. Sassen, D. O. Starr, and G. Stephens, 2002: Cirrus. Oxford University Press, 504 pp.Google Scholar
  128. Macke, A., 1993: Scattering of light by polyhedral ice crystals. Appl. Opt., 32, 2780–2788.Google Scholar
  129. Macke, A., M. I. Mishchenko, K. Muinonen, and B. E. Carlson, 1995: Scattering of light by large nonspherical particles: ray tracing approximation versus T-matrix method. Opt. Lett., 20, 1934–1936.Google Scholar
  130. Macke, A., J. Mueller, and E. Raschke, 1996: Single scattering properties of atmospheric ice crystal. J. Atmos. Sci., 53, 2813–2825.Google Scholar
  131. Macke, A., P. N. Francis, G. M. McFarquhar, and S. Kinne, 1998: The role of ice particle shapes and size distributions in the single scattering properties of cirrus clouds. J. Atmos. Sci., 55, 2874–2883, doi: 10.1175/1520-0469(1998)055<2874: TROIPS>2.0.CO;2.Google Scholar
  132. Mackowski, D. W., 2002: Discrete dipole moment method for calculation of the T-matrix for nonspherical particles. Journal of the Optical Society of America A, 19, 881–893.Google Scholar
  133. Mackowski, D. W., and M. I. Mishchenko, 1996: Calculation of the T matrix and the scattering matrix for ensembles of spheres. Journal of the Optical Society of America A, 13, 2266–2278.Google Scholar
  134. Mackowski, D. W., and M. I. Mishchenko, 2011: A multiple sphere T-matrix Fortran code for use on parallel computer clusters. J. Quant. Spectrosc. Radiat. Transfer, 112, 2182–2192.Google Scholar
  135. McFarquhar, G. M., P. Yang, A. Macke, and A. J. Baran, 2002: A new parameterization of single-scattering solar radiative properties for tropical anvils using observed ice crystal size and shape distributions. J. Atmos. Sci., 59, 2458–2478.Google Scholar
  136. McFarquhar, G. M., S. Iacobellis, and R. C. J. Somerville, 2003: SCM simulations of tropical ice clouds using observationally based parameterizations of microphysics. J. Climate, 16, 1643–1664.Google Scholar
  137. Meyer, K., P. Yang, and B.-C. Gao, 2007a: Ice cloud optical depth from MODIS cirrus reflectance. IEEE Geoscience and Remote Sensing Lett., 4, 471–474.Google Scholar
  138. Meyer, K., P. Yang, and B.-C. Gao, 2007b: Tropical ice cloud optical depth, ice water path, and frequency fields inferred from the MODIS level-3 data. Atmos. Res., 85, 171–182.Google Scholar
  139. Minnis, P., K. N. Liou, and Y. Takano, 1993a: Inference of cirrus cloud properties using satellite-observed visible and infrared radiances, Part I: Parameterization of radiance fields. J. Atmos. Sci., 50, 1279–1304.Google Scholar
  140. Minnis, P., P. W. Heck, and D. F. Yong, 1993b: Inference of cirrus cloud properties using satellite-observed visible and infrared radiances, Part II: Verification of theoretical cirrus radiative properties. J. Atmos. Sci., 50, 1305–1322.Google Scholar
  141. Minnis, P. S., and Coauthors, 2011: CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part I: Algorithms. IEEE Trans. Geosci. Remote Sens, 49, 4374–4399.Google Scholar
  142. Mishchenko, M. I., 1991: Light scattering by randomly oriented axially symmetric particles. Journal of the Optical Society of America A, 8, 871–882.Google Scholar
  143. Mishchenko, M. I., and A. Macke, 1998: Incorporation of physical optics effects and δ-function transmission. J. Geophys. Res., 103, 1799–1805.Google Scholar
  144. Mishchenko, M. I., L. D. Travis, and D. W. Mackowski, 1996: Tmatrix computations of light scattering by nonspherical particles: A review. J. Quant. Spectrosc. Radiat. Transfer, 55, 535–575.Google Scholar
  145. Mishchenko, M. I., and L. D. Travis, 1998: Capabilities and limitations of a current fortran implementation of the T-matrix method for randomly oriented rotationally symmetric scatterers. J. Quant. Spectrosc. Radiat. Transfer, 60, 309–324.Google Scholar
  146. Mishchenko, M. I., J. W. Hovenier, and L. D. Travis, 2000: Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications. Academic Press, 690 pp.Google Scholar
  147. Mishchenko, M. I., L. D. Travis, and A. A. Lacis, 2002: Scattering, Absorption and Emission of Light by Small Particles. Cambridge University Press, 445 pp.Google Scholar
  148. Mitchell, D. L., A. Macke, and Y. G. Liu, 1996: Modeling cirrus clouds. Part II: Treatment of radiative properties. J. Atmos. Sci., 53, 2967–2988.Google Scholar
  149. Mitchell, D. L., A. J. Baran, W. P. Arnott, and C. Schmitt, 2006: Testing and comparing the modified anomalous diffraction approximation. J. Atmos. Sci., 63, 2948–2962.Google Scholar
  150. Morse, P. M., and H. Feshbach, 1953: Methods of Theoretical Physics, Part I. McGraw-Hill, 997 pp.Google Scholar
  151. Muinonen, K., 1989: Scattering of light by crystals: A modified Kirchhoff approximation. Appl. Opt., 28, 3044–3050.Google Scholar
  152. Muinonen, K, T. Nousiainen, P. Fast, K. Lumme, and J. I. Peltoniemi, 1996: Light scattering by Gaussian random particles: Ray optics approximation. J. Quant. Spectrosc. Radiat. Trans., 55, 577–601.Google Scholar
  153. Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47, 1878–1893.Google Scholar
  154. Neshyba, S. P., B. Lowen, M. Benning, A. Lawson, and P. M. Rowe, 2013: Roughness metrics of prismatic facets of ice. J. Geophys. Res., 118, 3309–3318.Google Scholar
  155. Nieminen, T. A., H. Rubinsztein-Dunlop, and N. R. Heckenberg, 2003: Calculation of the T-matrix: General considerations and application of the point-matching method. J. Quant. Spectrosc. Radiat. Transfer, 79–80, 1019–1029.Google Scholar
  156. Noel, V., and H. Chepfer, 2010: A global view of horizontally oriented crystals in ice clouds from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). J. Geophys. Res., 115, D00H23, doi:10.1029/2009JD012365.Google Scholar
  157. Nousiainen, T., and G. M. McFarquhar, 2004: Light scattering by quasi-spherical ice crystals. J. Atmos. Sci., 61, 2229–2248.Google Scholar
  158. Nousiainen, T., and K. Muinonen, 2007: Surface roughness effects on single-scattering properties of wavelength-scale particles. J. Quant. Spectrosc. Radiat. Transfer, 106, 389–397.Google Scholar
  159. Nussenzveig, H. M., 1979: Complex angular momentum theory of the rainbow and the glory. Journal of the Optical Society of America A, 69, 1068–1079.Google Scholar
  160. Nussenzveig, H. M., 1992: Diffraction Effects in Semiclassical Scattering. Cambridge University Press, 256 pp.Google Scholar
  161. Nussenzveig, H. M., and W. J. Wiscombe, 1980: Efficiency factor in Mie scattering. Phys. Rev. Lett., 45, 1490–1494.Google Scholar
  162. Panetta, R. L., C. Liu, and P. Yang, 2013: A pseudo-spectral time domain method for light scattering computation. Light Scattering Reviews 8, A. Kokhanovsky, Ed., Springer-Praxis Publishing, 139–187.Google Scholar
  163. Parol, F., J. C. Buriez, G. Brogniez, and Y. Fouquart, 1991: Information content of AVHRR channels 4 and 5 with respect to the effective radius of cirrus cloud particles. J. Appl. Meteor., 30, 973–984.Google Scholar
  164. Penttila, A., and Coauthors, 2007: Comparison between discrete dipole implementations and exact techniques. J. Quant. Spectrosc. Radiat. Transfer, 106, 417–436.Google Scholar
  165. Peterson, B., and S. Ström, 1973: T-matrix for electromagnetic scattering from an arbitrary number of scatterers and representations of E(3). Phys. Rev. D, 8, 3661–3678.Google Scholar
  166. Petty, G. W., and W. Huang, 2010: Microwave backscatter and extinction by soft ice spheres and complex snow aggregates. J. Atmos. Sci., 67, 769–787.Google Scholar
  167. Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459–473.Google Scholar
  168. Platt, C. M. R., and Harshvardhan, 1988: Temperature dependence of cirrus extinction: Implications for climate feedback. J. Geophys. Res., 93, 11051–11058.Google Scholar
  169. Podowitz, D. I., C. Liu, P. Yang, and M. A. Yurkin, 2014: Comparison of the pseudo-spectral time domain method and the discrete dipole approximation for light scattering by ice spheres. J. Quant. Spectrosc. Radiat. Transfer, 146, 402–409.Google Scholar
  170. Pope, V. D., M. L. Gallani, P. R. Rowntree, and R. A. Stratton, 2000: The impact of new physical parameterizations in the Hadley Centre climate model: HadAM3. Climate Dyn., 16, 123–146.Google Scholar
  171. Popov, A. A., 1996: New method for calculating the characteristics of light scattering by spatially oriented atmospheric crystals. Proc. SPIE, 2822, 186–194.Google Scholar
  172. Poulsen, C., and Coauthors, 2012: Cloud retrievals from satellite data using optimal estimation: Evaluation and application to ATSR. Atmos. Meas. Tech., 5, 1889–1910.Google Scholar
  173. Prabhakara, C., R. S. Fraser, G. Dalu, M. C. Wu, R. J. Curran, and T. Styles, 1988: Thin cirrus clouds: Seasonal distribution over oceans deduced from Nimbus-4 IRIS. J. Appl. Meteor., 27, 379–399.Google Scholar
  174. Purcell, E. M., and C. R. Pennypacker, 1973: Scattering and absorption of light by nonspherical dielectric grains. Astrophysicaz Journal, 186, 705–714.Google Scholar
  175. Ramaswamy, V., and A. Detwiler, 1986: Interdependence of radiation and microphysics in cirrus clouds. J. Atmos. Sci., 43, 2289–2301.Google Scholar
  176. Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. World Scientific, 238 pp.Google Scholar
  177. Roebeling, R. A., A. J. Feijt, and P. Stammes, 2006: Cloud property retrievals for climate monitoring: Implications of differences between Spinning Enhanced Visible and Infrared Imager (SEVIRI) on METEOSAT-8 and Advanced Very High Resolution Radiometer (AVHRR) on NOAA-17. J. Geophys. Res., 111, D20210, doi:10.1029/2005JD006990.Google Scholar
  178. Rolland, P., and K. N. Liou, 2001: Surface variability effects on the remote sensing of thin cirrus optical and microphysical properties. J. Geophys. Res., 106, 22965–22977.Google Scholar
  179. Rolland, P., K. N. Liou, M. D. King, S.-C. Tsay, and G. M. McFarquhar, 2000: Remote sensing of optical and microphysical properties of cirrus clouds using Moderate-Resolution Imaging Spectroradiometer channels: methodology and sensitivity to physical assumptions. J. Geophys. Res., 105, 11721–11738.Google Scholar
  180. Roskovensky, J., and K. N. Liou, 2003a: Detection of thin cirrus using a combination of 1.38-μm reflectance and window brightness temperature difference. J. Geophys. Res., 108, doi:10.1029/2002JD003346.Google Scholar
  181. Roskovensky, J. K., and K. N. Liou, 2003b: Detection of thin cirrus from 1.38 μm/0.65 μm reflectance ratio combined with 8.6-11 μm brightness temperature difference. Geophys. Res. Lett., 30, doi:10.1029/2003GL018135.Google Scholar
  182. Roskovensky, J. K., and K. N. Liou, 2005: Differentiating airborne dust from cirrus clouds using MODIS data. Geophy. Res. Lett., 32, L12809, doi:10.1029/2005GL022798.Google Scholar
  183. Roskovensky, J. K., K. N. Liou, T. J. Garrett, and D. Baumgardner, 2004: Simultaneous retrieval of aerosol and thin cirrus optical depths using MODIS airborne simulator data during CRYSTAL-FACE and CLAMS. Geophy. Res. Lett., 31, doi:10.1029/2004GL020457.Google Scholar
  184. Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 2261–2288.Google Scholar
  185. Saxon, D. S., 1973: Lectures on the scattering of light. Proceedings of the UCLA International Conference on Radiation and Remote Sensing of the Atmosphere, J. G. Kuriyan, Ed., Western Periodicals, 27–308.Google Scholar
  186. Shcherbakov, V., J. F. Gayet, O. Jourdan, J. Ström, and A. Minikin, 2006: Light scattering by single ice crystals of cirrus clouds. Geophys. Res. Lett., 33, L15809, doi: 10.1029/2006GL026055.Google Scholar
  187. Slingo, A., 1989: A GCM Parameterization for the shortwave radiative properties of water clouds. J. Atmos. Sci., 46, 1419–1427.Google Scholar
  188. Starr, D. O’C., and D. P. Wylie, 1990: The 27–28 October 1986 fire cirrus case study: meteorology and clouds. Mon. Wea. Rev., 118, 2259–2287.Google Scholar
  189. Stengel, M., and Coauthors, 2014: The Clouds Climate Change Initiative: Assessment of state-of-the-art cloud property retrieval schemes applied to AVHRR heritage measurements. Remote Sens. Environ., doi: 10.1016/j.rse.2013.10.035.Google Scholar
  190. Stephens, G., 1980a: Radiative properties of cirrus clouds in the infrared region. J. Atmos. Sci., 37, 435–446.Google Scholar
  191. Stephens, G., 1980b: Radiative transfer on a linear lattice: Application to anisotropic ice crystal clouds. J. Atmos. Sci., 37, 2095–2104.Google Scholar
  192. Stephens, G. L., S.-C. Tsay, P. W. Stackhouse Jr., and P. J. Flatau, 1990: The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback. J. Atmos. Sci., 47, 1742–1754.Google Scholar
  193. Sun, B., P. Yang, and G. W. Kattawar, 2013: Many-body iterative T-matrix method for large aspect ratio particles. J. Quant. Spectrosc. Radiat. Transfer, 127, 165–175.Google Scholar
  194. Sun, W., Q. Fu, and Z. Chen, 1999: Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition. Appl. Opt., 38, 3141–3151.Google Scholar
  195. Sun, W., G. Videen, S. Kato, B. Lin, C. Lukashin, and Y. Hu, 2011: A study of subvisual clouds and their radiation effect with a synergy of CERES, MODIS, CALIPSO, and AIRS data. J. Geophys. Res., 116, D22207, doi: 10.1029/2011JD016422.Google Scholar
  196. Sun, Z., and K. P. Shine, 1995: Parameterization of ice cloud radiative properties and its application to the potential climatic importance of mixed-phase clouds. J. Climate, 8, 1874–1888.Google Scholar
  197. Takano, Y., and K. N. Liou, 1989a: Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals. J. Atmos. Sci., 46, 3–19.Google Scholar
  198. Takano, Y., and K. N. Liou, 1989b: Solar radiative transfer in cirrus clouds. Part II: Theory and computation of multiple scattering in an anisotropic medium. J. Atmos. Sci., 46, 20–36.Google Scholar
  199. Takano, Y., and K. N. Liou, 1995: Radiative transfer in cirrus clouds. Part III: Light scattering by irregular ice crystals. J. Atmos. Sci., 52, 818–837.Google Scholar
  200. Takano, Y., K. N. Liou, and P. Yang, 2012: Diffraction by rectangular parallelepiped, hexagonal cylinder, and three-axis ellipsoid: some analytic solutions and numerical results. J. Quant. Spectrosc. Radiat. Transfer, 113, 1836–1843.Google Scholar
  201. Takano, Y., K. N. Liou, M. Kahnert, and P. Yang, 2013: The singlescattering properties of black carbon aggregates determined from the geometric-optics surface-wave approach and the Tmatrix method. J. Quant. Spectrosc. Radiat. Transfer, 125, 51–56.Google Scholar
  202. Twomey, S., and T. Cocks, 1982: Spectral reflectance of clouds in the near-infrared: Comparison of measurements and calculations. J. Meteor. Soc. Japan, 60, 583–592.Google Scholar
  203. Twomey, S., and T. Cocks, 1989: Remote sensing of cloud parameters from spectral reflectance in the near-infrared. Beitr. Phys. Atmos., 62, 172–179.Google Scholar
  204. Um, J., and G. M. McFarquhar, 2007: Single-scattering properties of aggregates of bullet rosettes in cirrus. J. Appl. Meteor. Climatol., 46, 757–775.Google Scholar
  205. Ulanowski, Z., E. Hesse, P. H. Kaye, and A. J. Baran, 2006: Light scattering by complex ice-analogue crystals. J. Quant. Spectrosc. Radiat. Transfer, 100, 382–392.Google Scholar
  206. Ulanowski, Z., P. H. Kaye, E. Hirst, R. S. Greenaway, R. J. Cotton, E. Hesse, and C. T. Collier, 2014: Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements. Atmos. Chem. Phys., 14, 1649–1662.Google Scholar
  207. van de Hulst, H. C., 1957: Light Scattering by Small Particles. Wiley, 470 pp.Google Scholar
  208. van Diedenhoven, B., B. Cairns, I. V. Geogdzhayev, A. M. Fridlind, A. S. Ackerman, P. Yang, and B. A. Baum, 2012: Remote Sensing of ice crystal asymmetry parameter using multi-directional polarization measurements—Part 1: Methodology and evaluation with simulated measurements. Atmos. Meas. Tech., 5, 2361–2374.Google Scholar
  209. van Diedenhoven, B., B. Cairns, A. M. Fridlind, A. S. Ackerman, and T. J. Garrett, 2013: Remote sensing of ice crystal asymmetry parameter using multi-directional polarization measurements-Part 2: Application to the Research Scanning Polarimeter. Atmos. Chem. Phys., 13, 3185–3203.Google Scholar
  210. van Diedenhoven, B., A. S. Ackerman, B. Cairns, and A. M. Fridlind, 2014: A flexible parameterization for shortwave optical properties of ice crystals. J. Atmos. Sci., 71, 1763–1782.Google Scholar
  211. Walther, A., and A. K. Heidinger, 2012: Implementation of the daytime cloud optical and microphysical properties algorithm (DCOMP) in PATMOS-x. J. Appl. Meteor. Climatol., 51, 1371–1390.Google Scholar
  212. Wang, C., P. Yang, B. A. Baum, S. Platnick, A. K. Heidinger, Y. Hu, and R. E. Holz, 2011: Retrieval of ice cloud optical thickness and effective particle size using a fast infrared radiative transfer model. J. Appl. Meteor. Climatol., 50, 2283–2297.Google Scholar
  213. Wang, C., S. Ding, P. Yang, B. A. Baum, and A. E. Dessler, 2012: A new approach to retrieving cirrus cloud height with a combination of MODIS 1.24- and 1.38-μm channels. Geophys. Res. Lett., 39, L24806, doi:10.1029/2012GL053854.Google Scholar
  214. Wang, C. X., P. Yang, A. Dessler, B. A. Baum, and Y. Hu, 2014: Estimation of the cirrus cloud scattering phase function from satellite observations. J. Quant. Spectrosc. Radiat. Transfer, 138, 36–49.Google Scholar
  215. Waterman, P. C., 1965: Matrix formulation of electromagnetic scattering. Proc. IEEE, 53, 805–812.Google Scholar
  216. Waterman, P. C., 1971: Symmetry, unitarity, and geometry in electromagnetic scattering. Phys. Rev. D, 3, 825–839.Google Scholar
  217. Watts, P. D., R. Bennartz, and F. Fell, 2011: Retrieval of twolayer cloud properties from multispectral observations using optimal estimation. J. Geophys. Res., 116, D16203, doi:10.1029/2011JD015883.Google Scholar
  218. Wendisch, M., and P. Yang, 2012: Theory of Atmospheric Radiative Transfer: A Comprehensive Introduction. Wiley, 321 pp.Google Scholar
  219. Wendisch, M., P. Yang, and P. Pilewskie, 2007: Effects of ice crystal habit on the thermal infrared radiative properties and forcing of cirrus clouds. J. Geophys. Res., 112, D08201, doi:10.1029/2006JD007899.Google Scholar
  220. Wendling, P., R. Wendling, and H. K. Weickmann, 1979: Scattering of solar radiation by hexagonal ice crystals. Appl. Opt., 18, 2663–2671.Google Scholar
  221. Winker, D. M., M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 2310–2323.Google Scholar
  222. Wiscombe, W. J., 1980: Improved Mie scattering algorithms. Appl. Opt., 19, 1505–1509.Google Scholar
  223. Wiscombe, W. J., and A. Mugnai, 1986: Single scattering from nonspherical Chebyshev particles: A compendium of calculations. NASA Ref. Publ. 1157, NASA/GSFC Greenbelt, MD.Google Scholar
  224. Wriedt, T., 2009: Light scattering theories and computer codes. J. Quant. Spectrosc. Radiat. Transfer, 110, 833–843.Google Scholar
  225. Xie, Y., P. Yang, K. N. Liou, P. Minnis, and D. P. Duda, 2012: Parameterization of contrail radiative properties for climate studies. Geophys. Res. Lett., 39, L00F02, doi:10.1029/2012GL054043.Google Scholar
  226. Yan, W. Z., Y. Du, H. Wu, D. Liu, and B. I. Wu, 2008: EM scattering from a long dielectric circular cylinder. Prog. Electromagn. Res., 85, 39–67.Google Scholar
  227. Yang, P., and K. N. Liou, 1995: Light scattering by hexagonal ice crystals: Comparison of finite-difference time domain and geometric optics methods. J. Opt. Soc. Amer. A., 12, 162–176.Google Scholar
  228. Yang, P., and K. N. Liou, 1996a: Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space. J. Opt. Soc. Amer. A., 13, 2072–2085Google Scholar
  229. Yang, P., and K. N. Liou, 1996b: Geometric-optics-integralequation method for light scattering by nonspherical ice crystals. Appl. Opt., 35, 6568–6584.Google Scholar
  230. Yang, P., and K. N. Liou, 1997: Light scattering by hexagonal ice crystals: Solution by a ray-by-ray integration algorithm. Journal of the Optical Society of America A, 14, 2278–2288.Google Scholar
  231. Yang, P., and K. N. Liou, 1998: Single-scattering properties of complex ice crystals in terrestrial atmosphere. Contributions to Atmospheric Physics, 71, 223–248.Google Scholar
  232. Yang, P., and K. N. Liou, 2000: Finite difference time domain method for light scattering by nonspherical particles. Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications, M. I. Mishchenko et al., Eds., Academic Press, 173–221.Google Scholar
  233. Yang, P., and K. N. Liou, 2009a: Effective refractive index for determining ray propagation in an absorbing dielectric particle. J. Quant. Spectrosc. Radiat. Transfer, 110, 300–306.Google Scholar
  234. Yang, P., and K. N. Liou, 2009b: An “exact” geometric-optics approach for computing the optical properties of large absorbing particles. J. Quant. Spectrosc. Radiat. Transfer, 110, 1162–1177.Google Scholar
  235. Yang, P., K. N. Liou, and W. P. Arnott, 1997: Extinction efficiency and single-scattering albedo for laboratory and natural cirrus clouds. J. Geophys. Res., 102, 21 825–21 835.Google Scholar
  236. Yang, P., K. N. Liou, K. Wyser, and D. Mitchell, 2000: Parameterization of the scattering and absorption properties of individual ice crystals. J. Geophys. Res., 105(D4), 4699–4718.Google Scholar
  237. Yang, P., and Coauthors, 2001: Sensitivity of cirrus bidirectional reflectance to vertical inhomogeneity of ice crystal habits and size distributions for two Moderate-Resolution Imaging Spectrometer (MODIS) bands. J. Geophys. Res., 106, 17267–17291.Google Scholar
  238. Yang, P., and Coauthors, 2003: Spectral signature of cirrus clouds in the far-infrared region: Single-scattering calculations and radiative sensitivity study. J. Geophys. Res. 108(D18), 4569, doi:10.1029/2002JD2002JD003291.Google Scholar
  239. Yang, P., H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, 2005: Scattering and absorption property database for nonspherical ice particles in the near-through far-infrared spectral region. Appl. Opt., 44, 5512–5523.Google Scholar
  240. Yang, P., and Coauthors, 2007: Modeling of the scattering and radiative properties of nonspherical dust particles. J. Aerosol Sci., 38, 995–1014.Google Scholar
  241. Yang, P., G. W. Kattawar, G. Hong, P. Minnis, and Y.-X. Hu, 2008: Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds: Part I. Singlescattering properties of ice crystals with surface roughness. IEEE Trans. Geosci. Remote Sens., 46, 1940–1947.Google Scholar
  242. Yang, P., L. Bi, B. A. Baum, K. N. Liou, G. W. Kattawar, M. I. Mishchenko, and B. Cole, 2013: Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm. J. Atmos. Sci., 70, 330–347.Google Scholar
  243. Yee, S. K., 1966: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Transactions on Antennas and Propagation, 14, 302–307.Google Scholar
  244. Yi, B., P. Yang, K. N. Liou, P. Minnis, and J. E. Penner, 2012: Simulation of the global contrail radiative forcing: A sensitivity analysis. Geophys. Res. Lett., 39, L00F03, doi:10.1029/2012GL054042.Google Scholar
  245. Yi, B., P. Yang, B. A. Baum, T. L’Ecuyer, L. Oreopoulos, E. J. Mlawer, A. J. Heymsfield, and K.-N. Liou, 2013: Influence of ice particle surface roughening on the global cloud radiative effect. J. Atmos. Sci., 70, 2794–2807.Google Scholar
  246. Yi, B., X. Huang, P. Yang, B. A. Baum, and G. W. Kattawar, 2014: Considering polarization in MODIS-based cloud property retrievals by using a vector radiative transfer code. J. Quant. Spectrosc. Radiat. Transfer, 146, 540–548.Google Scholar
  247. Yue, Q., K. N. Liou, S. C. Ou, B. H. Kahn, P. Yang, and G. Mace, 2007: Interpretation of AIRS data in thin cirrus atmospheres based on a fast radiative transfer model. J. Atmos. Sci. 64, 3827–3842.Google Scholar
  248. Yurkin, M. A., and A. G. Hoekstra, 2007: The discrete dipole approximation: An overview and recent developments. J. Quant. Spectrosc. Radiat. Transfer, 106, 558–589.Google Scholar
  249. Yurkin, M. A., and A. G. Hoekstra, 2011: The discrete-dipole-approximation code ADDA: Capabilities and known limitations. J. Quant. Spectrosc. Radiat. Transfer, 112, 2234–2247.Google Scholar
  250. Yurkin, M. A., A. G. Hoekstra, R. S. Brock, and J. Q. Lu, 2007: Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers. Opt. Express, 15, 17902–17911.Google Scholar
  251. Yurkin, M. A., M. Min, and A. G. Hoekstra, 2010: Application of the discrete dipole approximation to very large refractive indices: Filtered coupled dipoles revived. Phys. Rev. E, 82, 036703.Google Scholar
  252. Zhang, H., Q. Chen, and B. Xie, 2015: A new parameterization for ice cloud optical properties used in BCC-RAD and its radiative impact. J. Quant. Spectrosc. Radiat. Transfer, 150, 76–86.Google Scholar
  253. Zhou, C., P. Yang, A. E. Dessler, Y. Hu, and B. A. Baum, 2012: Study of horizontally oriented ice crystals with CALIPSO observations and comparison with Monte Carlo radiative transfer simulations. J. Appl. Meteor. Climate, 51, 1426–1439.Google Scholar
  254. Zhou, C., P. Yang, A. E. Dessler, and F. Liang, 2013: Statistical properties of horizontally oriented plates in optically thick clouds from satellite observations. IEEE Geoscience and Remote Sensing Lett., 10, 986–990.Google Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ping Yang
    • 1
  • Kuo-Nan Liou
    • 2
  • Lei Bi
    • 1
  • Chao Liu
    • 1
  • Bingqi Yi
    • 1
  • Bryan A. Baum
    • 3
  1. 1.Department of Atmospheric SciencesTexas A&M UniversityCollege StationUSA
  2. 2.Joint Institute for Regional Earth System Science and Engineering, and Department of Atmospheric and Oceanic SciencesUniversity of CaliforniaLos AngelesUSA
  3. 3.Space Science and Engineering CenterUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations