Skip to main content
Log in

Development and preliminary evaluation of a double-cell ozonesonde

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Ozonesondes are widely used to obtain ozone concentration profiles from the surface to the upper atmosphere. A kind of double-cell ozonesonde has been developed at the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (named the “IAP ozonesonde”) based on previous experience over the past 20 years of developing the singlecell GPSO3 ozonesonde. The IAP ozonesonde is of the Electrochemical Concentration Cell (ECC) type. A detailed description of the IAP ozonesonde is firstly provided in the present paper, followed by a presentation of results from a series of launches carried out to evaluate its performance. The analysis involved comparing its observations with measurements from the GPSO3 and ECC ozonesondes (Model type ENSCI-Z) as well as a Brewer spectrophotometer. The results showed that the IAP ozonesonde is a vast improvement over the GPSO3 ozonesonde, able to capture vertical ozone structures very well and in good agreement with ECC ozonesonde measurements. The average difference in the ozone partial pressure between the IAP and ECC ozonesondes was 0.3 mPa from the surface to 2.5 km, close to zero from 2.5 to 9 km and generally less than 1 mPa for layers higher than 9 km. The apparent deviation is likely caused by a decreasing pump flow rate in the IAP ozonesonde which needs further improvement. The total ozone amounts measured by the IAP ozonesonde profiles were highly comparable with the Brewer data with a relative difference of 6%. The development of the IAP ozonesonde and its strong performance will surely accelerate the process of conventional observations of ozone profiles over China in the near future as well as provide more data for ozone research in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bian, J. C., A. Gettelman, H. B. Chen, and L. Pan, 2007: Validation of satellite ozone profile retrievals using Beijing ozonesonde data. J. Geophys. Res., 112, D06305, doi: 10.1029/2006JD007502.

    Google Scholar 

  • Brewer, A. W., and J. R. Milford, 1960: The Oxford Kew ozonesonde. Proceedings of the Roy Society London, Series A, 256, 470–495.

    Article  Google Scholar 

  • Deshler, T., and Coauthors, 2008: Atmospheric comparison of electrochemical cell ozonesondes from different manufacturers, and with different cathode solution strengths: The Balloon Experiment on Standards for Ozonesondes. J. Geophys. Res., 113, D04307, doi: 10.1029/2007JD008975.

    Google Scholar 

  • Farman, J. D., B. G. Gardiner, and J. D. Shanklin, 1985: Large losses of total ozone in Antarctica reveal seasonal CIOx/NOx interaction. Nature, 315, 207–210.

    Article  Google Scholar 

  • Johnson, B. J., S. J. Oltmans, H. Vömel, H. G. J. Smit, T. Deshler, and C. Kroger, 2002: Electrochemical concentration cell (ECC) ozonesonde pump efficiency measurements and tests on the sensitivity to ozone of buffered and unbuffered ECC sensor cathode solutions. J. Geophys. Res., 107(D19), ACH8-1–ACH8-18, doi: 10.1029/2001JD000557.

    Google Scholar 

  • Holben, B. N., and Coauthors, 1998: A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 1–16, doi: 10.1016/S0034-4257(98)00031-5.

    Article  Google Scholar 

  • Kobayashi, J., and Y. Toyama, 1966: On various methods of measuring the vertical distribution of atmospheric ozone (III)—Carbon iodine type chemical ozone sonde. Pap. Meteor. Geophys., 17, 113–126.

    Google Scholar 

  • Komhyr, W. D., 1969: Electrochemical concentration cells for gas analysis. Ann. Geophys., 25, 203–210.

    Google Scholar 

  • Komhyr, W. D., 1986: Operations handbook-Ozone measurements to 40 km altitude with model 4A-ECC-ozone sondes. NOAA Tech Memorandum ERL-ARL-149.

  • Komhyr, W. D., R. A. Barnes, G. B. Brothers, J. A. Lathrop, and D. P. Opperman, 1995: Electrochemical concentration cell ozonesonde performance evaluation during STOIC 1989. J. Geophys. Res., 100, 9231–9244.

    Article  Google Scholar 

  • Logan, J A, 1999: An analysis of ozonesonde data for the troposphere: Recommendations for testing 3-D models and development of a gridded climatology for tropospheric ozone. J. Geophys. Res., 104 16 115–16 149.

    Article  Google Scholar 

  • McPeters, R. D., G. J. Labow, and B. J. Johnson, 1997: A satellite-derived ozone climatology for balloonsonde estimation of total column ozone. J. Geophys. Res., 102, 8875–8885.

    Article  Google Scholar 

  • Nash, J., T. Oakley, H. Vömel, and W. Li, 2011: WMO intercomparison of high quality radiosonde systems Yangjiang, China, 12 July–3 August 2010. WMO/TD-No. 1580.

    Google Scholar 

  • Science Pump Corporation, 2010: Operator’s Manual Model 6A ECC Ozonesonde. [Available online at http://www.docstoc.com/docs/24322231/SCIENCE-PUMP-CORPORATIONOPERATORS-MANUAL-MODEL-6A-ECC-OZONESONDE].

    Google Scholar 

  • Schenkel, A., and B. Broder, 1982: Interference of some trace gases with ozone measurements by the KI method. Atmos. Environ., 16, 2187–2190.

    Article  Google Scholar 

  • Smit, H. G. J., and D. Kley, 1998: The 1996 WMO International intercomparison of ozonesondes under quasi flight conditions in the environmental simulation chamber at Jülich. WMO Global Atmos. Watch Rep., 130, World Meteorol. Organ., Geneva, Switzerland, 108 pp.

    Google Scholar 

  • Smit, H. G. J., and W. Sträter, 2004a: The 2000 WMO international intercomparison of operating procedures for ECCozone sondes at the environmental simulation facility at Jülich. WMO Global Atmos. Watch Rep., No. 158, World Meteorol. Organ., Geneva, Switzerland, 146 pp.

    Google Scholar 

  • Smit, H. G. J., and W. Sträter, 2004b: JOSIE-1998 performance of ECC ozone sondes of SPC-6A and ENSCI-Z type. WMO Global Atmos.Watch Rep., No. 157, World Meteorol. Organ., Geneva, Switzerland, 64 pp.

    Google Scholar 

  • Smit, H. G. J., and Coauthors, 2007: Assessment of the performance of ECC-ozonesondes under quasi-flight conditions in the environmental simulation chamber: Insights from the Juelich Ozone Sonde Intercomparison Experiment (JOSIE). J. Geophys. Res., 112, D19306, doi: 10.1029/2006JD007308.

    Article  Google Scholar 

  • Smit, H. G. J., and Coauthors, 2013: Quality Assurance and Quality Control for Ozonesonde Measurements in GAW. WMO Global Atmos. Watch Rep., 201, World Meteorol. Organ., Geneva, Switzerland, 92 pp.

    Google Scholar 

  • Steinbrecht, W., R. Schwartz, and H. Claude, 1998: New pump correction for the Brewer-Mast ozone sonde: Determination from experiment and instrument intercomparisons. J. Atmos. Ocean. Technol., 15, 144–156.

    Article  Google Scholar 

  • Stübi, R., G. Levrat, B. Hoegger, P. Viatte, J. Staehelin, and F. J. Schmidlin, 2008: In-flight comparison of brewer-mast and electrochemical concentration cell ozonesondes. J. Geophys. Res., 113, D13302, doi: 10.1029/2007JD009091.

    Article  Google Scholar 

  • Thompson, A. M., and Coauthors, 2003: Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology: 1. Comparison with Total Ozone Mapping Spectrometer (TOMS) and ground-based measurements. J. Geophys. Res., 108 (D2), 8238, doi: 10.1029/2001JD000967.

    Google Scholar 

  • Thompson, A. M., and Coauthors, 2007: Intercontinental chemical transport experiment ozonesonde network study (IONS) 2004: 2. Tropospheric ozone budgets and variability over northeastern North America. J. Geophys. Res., 112, D12S13, doi: 10.1029/2006JD007670.

    Google Scholar 

  • Thompson, A. M., S. J. Oltmans, D. W. Tarasick, P. von der Gathen, H. G. J. Smit, and J. C. Witte, 2011: Strategic ozone sounding networks: Review of design and accomplishments. Atmos. Environ., 45, 2145–2163.

    Article  Google Scholar 

  • Vömel, H., and K. Diaz, 2010: Ozone Sonde cell current measurements and implications for observations of near-zero ozone concentrations in the tropical upper troposphere. Atmospheric Measurement Techniques, 3(2), 495–505, doi: 10.5194/amt3-495-2010.

    Article  Google Scholar 

  • Wang, G. C., Q. X. Kong, Y. J. Xuan, X. W. Wan, H. B. Chen, and S. Q. Ma, 2003: Development and application of ozonesonde system in China. Advance in Earth Sciences, 18(3), 471–475. (in Chinese with English abstract)

    Google Scholar 

  • Wang, Y., and Coauthors, 2012: Tropospheric ozone trend over Beijing from 2002–2010: ozonesonde measurements and modeling analysis. Atmos. Chem. Phys., 12, 8389–8399, doi: 10.5194/acp-12-8389-2012.

    Article  Google Scholar 

  • Xuan, Y. J., S. Q. Ma, H. B. Chen, G. C. Wang, Q. X. Kong, Q. Zhao, and X. W. Wan, 2004: Intercomparisons of GPSO3 and Vaisala ECC ozone sondes. Plateau Meteorology, 23(3), 394–399. (in Chinese with English abstract)

    Google Scholar 

  • Zheng, X. D, and W. Li, 2005: Analysis of the data quality observed by the Chinese-made ozone sonde system. Quart J Appl Meteor., 16(5), 608–618. (in Chinese with English abstract)

    Google Scholar 

  • Zhou, X. J., and C. Luo, 1994: Ozone valley over Tibetan Plateau. Acta Meteorologica Sinica, 8(4), 505–506.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinqiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Xuan, Y., Yan, X. et al. Development and preliminary evaluation of a double-cell ozonesonde. Adv. Atmos. Sci. 31, 938–947 (2014). https://doi.org/10.1007/s00376-013-3104-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-013-3104-1

Key words

Navigation