Skip to main content
Log in

Temporal and spatial variations of global deep cloud systems based on CloudSat and CALIPSO satellite observations

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The spatial and temporal global distribution of deep clouds was analyzed using a four-year dataset (2007–10) based on observations from CloudSat and CALIPSO. Results showed that in the Northern Hemisphere, the number of deep cloud systems (DCS) reached a maximum in summer and a minimum in winter. Seasonal variations in the number of DCS varied zonally in the Southern Hemisphere. DCS occurred most frequently over central Africa, the northern parts of South America and Australia, and Tibet. The mean cloud-top height of deep cloud cores (TDCC) decreased toward high latitudes in all seasons. DCS with the highest TDCC and deepest cores occurred over east and south Asian monsoon regions, west-central Africa and northern South America. The width of DCS (WDCS) increased toward high latitudes in all seasons. In general, DCS were more developed in the horizontal than in the vertical direction over high latitudes and vice versa over lower latitudes. Findings from this study show that different mechanisms are behind the development of DCS at different latitudes. Most DCS at low latitudes are deep convective clouds which are highly developed in the vertical direction but cover a relatively small area in the horizontal direction; these DCS have the highest TDCC and smallest WDCS. The DCS at midlatitudes are more likely to be caused by cyclones, so they have less vertical development than DCS at low latitudes. DCS at high latitudes are mainly generated by large frontal systems, so they have the largest WDCS and the smallest TDCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227–1230.

    Article  Google Scholar 

  • Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. F. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303, 1337–1342.

    Article  Google Scholar 

  • Freud, E., and D. Rosenfeld, 2012: Linear relation between convective cloud drop number concentration and depth for rain initiation. J. Geophys. Res., 117, D02207, doi:10.1029/2011JD016457.

    Google Scholar 

  • Futyan, J. M., and A. D. Del Genio, 2007: Deep convective system evolution over Africa and the tropical Atlantic. J. Climate, 20, 5041–5060.

    Article  Google Scholar 

  • Harrison, E. F., P. Minnis, B. R. Barkstrom, V. Ramanathan, R. D. Cess, and G. G. Gibson., 1990: Seasonal-variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment. J. Geophys. Res., 95(D11), 18 687–18 703.

    Article  Google Scholar 

  • Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelsen, 1992: The effect of cloud type on earths’ energy-balance: Global analysis. J. Climate, 5, 1281–1304.

    Article  Google Scholar 

  • Hartmann, D. L., L. A. Moy, and Q. Fu, 2001: Tropical convection and the energy balance at the top of the atmosphere. J. Climate, 14, 4495–4511.

    Article  Google Scholar 

  • Huang, J. P., P. Minnis, B. Lin, Y. H. Yi, M. M. Khaiyer, R. F. Arduini, A. Fan, and G. G. Mace, 2005: Advanced retrievals of multilayered cloud properties using multispectral measurements. J. Geophys. Res., 110(D15), D15S18, doi:10.1029/2004JD005101.

    Google Scholar 

  • Huang, J. P., P. Minnis, B. Lin, Y. H. Yi, T. F. Fan, S. Sun Mack, and J. K. Ayers, 2006: Determination of ice water path in ice-over-water cloud systems using combined MODIS and AMSR-E measurements. Geophys. Res. Lett., 33(21), L21801, doi:10.1029/2006GL027038.

    Article  Google Scholar 

  • Iwasaki, S., T. Shibata, J. Nakamoto, H. Okamoto, H. Ishimoto, and H. Kubota, 2010: Characteristics of deep convection measured by using the A-train constellation. J. Geophys. Res., 115, D06207, doi:10.1029/2009JD013000.

    Google Scholar 

  • Khain, A., D. Rosenfeld, and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131, 2639–2663, doi: 10.1256/qj.04.62.

    Article  Google Scholar 

  • Kiehl, J. T., 1994: On the observed near cancellation between longwave and shortwave cloud forcing in tropical regions. J. Climate, 7, 559–565.

    Article  Google Scholar 

  • Koren, I., Y. J. Kaufman, D. Rosenfeld, L. A. Remer, and Y. Rudich, 2005: Aerosol invigoration and restructuring of Atlantic convective clouds. J. Geophys. Res., 32, L14828, doi:10.1029/2005GL023187.

    Google Scholar 

  • Lee, S. S., L. Donner, and J. E. Penner, 2010: Thunderstorm and stratocumulus: How does their contrasting morphology affect their interactions with aerosols? Atmos. Chem. Phys., 10, 6819–6837, doi: 10.5194/acp-10-6819-2010.

    Article  Google Scholar 

  • Luo, Y. L., R. H. Zhang, W. M. Qian, Z. Z. Luo, and H. Xin, 2010: Intercomparison of deep convection over the Tibetan Plateau-Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO data. J. Climate, 24, 2164–2177, doi:10.1175/2009JCLI4032.1.

    Article  Google Scholar 

  • Niu, F., and Z. Q. Li, 2012: Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics. Atmos. Chem. Phys., 12, 8491–8498, doi:10.5194/acp-12-84910-2012.

    Article  Google Scholar 

  • Li, Z. Q., F. Niu, J. W. Fan, Y. G. Liu, D. Rosenfeld, and Y. N. Ding, 2011: Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat. Geosci., 4, 888–894, doi: 10.1038/ngeo1313.

    Article  Google Scholar 

  • Peng, J., H. Zhang, and X. Y. Shen, 2013: Analysis of vertical structure of clouds in East Asia with CloudSat data. Chinese J. Atmos. Sci., 37(1), 91–100, doi: 10.3878/j.issn.1006-9895.2012.11188. (in Chinese)

    Google Scholar 

  • Radke, L. F., J. A. Coakley Jr., and M. D. King, 1989: Direct and remote sensing observations of the effects of ships on clouds. Science, 246, 1146–1149.

    Article  Google Scholar 

  • Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 243, 57–63.

    Article  Google Scholar 

  • Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, 2001: Aerosols, climate, and the hydrological cycle. Science, 294, 2119–2124.

    Article  Google Scholar 

  • Rosenfeld, D., 2000: Suppression of rain and snow by urban and industrial air pollution. Science, 287, 1793–1796.

    Article  Google Scholar 

  • Rosenfeld, D., U. Lohmann, G. B. Rage, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation?. Science, 321, 1309–1313.

    Article  Google Scholar 

  • Sassen, K., Z. E. Wang, and D. Liu, 2009: Cirrus clouds and deep convection in the tropics: Insights from CALIPSO and CloudSat. J. Geophys. Res., 114, D00H06, doi:10.1029/2009JD011916.

    Google Scholar 

  • Savtchenko, A., 2009: Deep convection and upper-tropospheric humidity: A look from the A-Train. Geophys. Res. Lett., 36, L06814, doi:10.1029/2009GL037508.

    Article  Google Scholar 

  • Takahashi, H., and Z. J. Luo, 2012: Where is the level of neutral buoyancy for deepconvection? Geophys. Res. Lett., 39, L15809, doi:10.1029/2012GL052638.

    Google Scholar 

  • Tao, W. K., X. W. Li, A. Khain, T. Matsui, S. Lang, and J. Simpson, 2007: Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophys. Res., 112, D24S18, doi:10.1029/2007JD008728.

    Google Scholar 

  • Yuan, J., and R. A. Houze Jr., 2010: Global variability of mesoscale convective system anvil structure from A-Train satellite data. J. Climate, 23, 5864–5888, doi: 10.1175/2010JCLI3671.1.

    Article  Google Scholar 

  • Yuan, J., R. A. Houze Jr., and A. J. Heymsfield, 2011: Vertical structures of anvil clouds of tropical mesoscale convective systems observed by CloudSat. J. Atmos. Sci., 68, 1653–1674, doi:10.1175/2011JAS3687.1.

    Article  Google Scholar 

  • Yuan, T. L., and Z. Q. Li, 2010: General macro- and microphysical properties of deep convective clouds as observed by MODIS. J. Climate, 23, 3457–3473, doi:10.1175/2009JCLI3136.1.

    Article  Google Scholar 

  • Yuan, T. L., J. V. Martins, Z. Q. Li, and L. A. Remer, 2010: Estimating glaciation temperature of deep convective clouds with remote sensing data. Geophys. Res. Lett., 37, L08808, doi:10.1029/2010GL042753.

    Google Scholar 

  • Zhang, H., J. Peng, X. W. Jing, and J. N. Li, 2013: The features of cloud overlapping in Eastern Asia and their effect on cloud radiative forcing. Sci. China (Earth), 56, 737–747, doi: 10.1007/s11430-012-4489-x.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, J., Zhang, H. & Li, Z. Temporal and spatial variations of global deep cloud systems based on CloudSat and CALIPSO satellite observations. Adv. Atmos. Sci. 31, 593–603 (2014). https://doi.org/10.1007/s00376-013-3055-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-013-3055-6

Key words

Navigation