Skip to main content
Log in

Evaluation of snow depth and snow cover fraction simulated by two versions of the flexible global ocean-atmosphere-land system model

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Based on historical runs, one of the core experiments of the fifth phase of the Coupled Model Intercomparison Project (CMIP5), the snow depth (SD) and snow cover fraction (SCF) simulated by two versions of the Flexible Global Ocean-Atmosphere-Land System (FGOALS) model, Grid-point Version 2 (g2) and Spectral Version 2 (s2), were validated against observational data. The results revealed that the spatial pattern of SD and SCF over the Northern Hemisphere (NH) are simulated well by both models, except over the Tibetan Plateau, with the average spatial correlation coefficient over all months being around 0.7 and 0.8 for SD and SCF, respectively. Although the onset of snow accumulation is captured well by the two models in terms of the annual cycle of SD and SCF, g2 overestimates SD/SCF over most mid- and high-latitude areas of the NH. Analysis showed that g2 produces lower temperatures than s2 because it considers the indirect effects of aerosols in its atmospheric component, which is the primary driver for the SD/SCF difference between the two models. In addition, both models simulate the significant decreasing trend of SCF well over (30°-70°N) in winter during the period 1971–94. However, as g2 has a weak response to an increase in the concentration of CO2 and lower climate sensitivity, it presents weaker interannual variation compared to s2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, E. A., 1976: A point energy and mass balance model of a snow cover. NOAA Tech. Rep. NWS 19, Office of Hydrology, National Weather Service, Silver Spring, MD, 150 pp.

    Google Scholar 

  • Bao, Q., and Coauthors, 2013: The Flexible Global Ocean-Atmosphere-Land System model Spectral Version 2: FGOALS-s2. Adv. Atmos. Sci., 30, 561–576, doi: 10.1007/s00376-012-2113-9.

    Article  Google Scholar 

  • Brown, R. D., 2000: Northern hemisphere snow cover variability and change, 1915–97. J. Climate, 13, 2339–2355.

    Article  Google Scholar 

  • Chen, X. L., T. J. Zhou, and Z. Guo, 2013: Climate sensitivities of two versions of FGOALS model to idealized radiative forcing. Sci. China Earth Sci.(in press).

    Google Scholar 

  • Cohen, J., and D. Rind, 1991: The effect of snow cover on the climate. J. Climate, 4, 689–706.

    Article  Google Scholar 

  • Collins, W. D., and Coauthors, 2006: The community climate system model version 3 (CCSM3). J. Climate, 19, 2122–2143.

    Article  Google Scholar 

  • Craig, A. P., R. Jacob, B. Kauffman, T. Bettge, J. Larson, E. Ong, C. Ding, and Y. He, 2005: CPL6: the new extensible, high performance parallel coupler for the Community Climate System Model. International Journal of High Performance Computing Applications, 19, 309–328.

    Article  Google Scholar 

  • Douville, H., J. F. Royer, and J. F. Mahfouf, 1995a: A new snow parameterization for the Météo-Frace climate model. Part I, Validation in stand-alone simulations. Climate Dyn., 12, 21–35.

    Article  Google Scholar 

  • Douville, H., J. F. Royer, and J. F. Mahfouf, 1995b: A new snow parameterization for the Méteé-Frace climate model. Part II, Validation in a 3-D GCM experiment. Climate Dyn., 12, 37–52.

    Article  Google Scholar 

  • Dye, D. G., 2002: Variability and trends in the annual snow cover cycle in Northern Hemisphere land areas, 1972–2000. Hydrological Processes, 16, 3065–3077.

    Article  Google Scholar 

  • Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689–719.

    Article  Google Scholar 

  • Essery, R., 1997: Seasonal snow cover and climate change in the Hadley Centre GCM. Ann. Glaciol., 25, 362–366.

    Google Scholar 

  • Etchevers, P., and Coauthors, 2002: An intercomparison of snow models: first results. Proceedings of the International Snow Science Workshop, Penticton, British Columbia, 8 pp.

    Google Scholar 

  • Etchevers, P., and Coauthors, 2004: Validation of the energy budget of an alpine snowpack simulated by several snow models (SnowMIP project). Annals of Glaciology, 38, 150–158.

    Article  Google Scholar 

  • Foster, D., and R. Davy, 1988: Global snow depth climatology. USAFETAC/TN-88/006. Scott Air Force Base, 48 pp.

    Google Scholar 

  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.

    Google Scholar 

  • Jordan, R. E., 1991: A one-dimensional temperature model for a snow cover: Technical documentation for SNTHERM. 89. U. S. Army Cold Regions Research and Engineering Laboratory Special Rep. 91-16, 49 pp.

    Google Scholar 

  • Legates, D. R., and C. J. Willmott, 1990a: Mean seasonal and spatial variability in global surface air temperature. Theor. Appl. Climatol., 41, 11–21.

    Article  Google Scholar 

  • Legates, D. R., and C. J. Willmott, 1990b: Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int. J. Climatol., 10, 111–127.

    Article  Google Scholar 

  • Li, L. J., and Coauthors, 2013a: Evaluation of grid-point atmospheric model of IAP LASG version 2 (GAMIL 2). Adv. Atmos. Sci., 30, 855–867, doi: 10.1007/s00376-013-2157-5.

    Article  Google Scholar 

  • Li, L. J., and Coauthors, 2013b: The flexible global ocean-atmosphere-land system model: Grid-point Version 2: FGOALS-g2. Adv. Atmos. Sci., 30, 543–560, doi: 10.1007/s00376-012-2140-6.

    Article  Google Scholar 

  • Li, W. P., X. Liu, S. P. Nie, X. Y. Guo, and X. L. Shi, 2009: Comparative studies of snow cover parameterization schemes used in climate models. Adv. Earth Sci., 24, 512–522. (in Chinese)

    Google Scholar 

  • Lin, P. F., Y. Q. Yu, and H. L. Liu, 2013: Long-term stability and oceanic mean state simulated by the coupled model FGOALS-s2. Adv. Atmos. Sci., 30, 175–192, doi: 10.1007/s00376-012-2042-7.

    Article  Google Scholar 

  • Liston, G. E., 2004: Representing subgrid snow cover heterogeneities in regional and global models. J. Climate, 17, 1381–1397.

    Article  Google Scholar 

  • Lin, P. F., H. L. Liu, and X. H. Zhang, 2007: Sensitivity of the upper ocean temperature and circulation in the equatorial Pacific to solar radiation penetration due to phytoplankton. Adv. Atmos. Sci., 24, 765–780, doi: 10.1007/s00376-007-0765-7.

    Article  Google Scholar 

  • Liu, H., and G. X. Wu, 1997: Impacts of land surface on climate of July and onset of summer monsoon: A study with an AGCM plus SSiB. Adv. Atmos. Sci., 14, 289–308.

    Article  Google Scholar 

  • Liu, H. L., X. H. Zhang, W. Li, Y. Q. Yu, and R. C. Yu, 2004a: An eddy-permitting oceanic general circulation model and its preliminary evaluation. Adv. Atmos. Sci., 21, 675–690.

    Article  Google Scholar 

  • Liu, H. L., Y. Q. Yu, W. Li, and X. H. Zhang, 2004b: Manual for LASG/IAP Climate System Ocean Model (LICOM1. 0). Science Press, 1–128. (in Chinese)

    Google Scholar 

  • Liu, H. L., P. F. Lin, Y. Q. Yu, and X. H. Zhang, 2012: The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2. Acta Meteorologica Sinica, 26, 318–329.

    Article  Google Scholar 

  • Manabe, S. and R. J. Stouffer, 1996: Low frequency variability of surface air temperature in a 1000 year integration of a coupled atmosphere-ocean-land surface model. J. Climate, 9, 376–393.

    Article  Google Scholar 

  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model, version 3 (CAM3). Part 1: Description and numerical tests. J. Climate, 21(15), 3642–3659.

    Article  Google Scholar 

  • Niu, G. Y., and Z. L. Yang, 2006: Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. J. Hydrometeor., 7, 937–952.

    Article  Google Scholar 

  • Niu, G. Y., and Z. L. Yang, 2007: An observation-based formulation of snow cover fraction and its evaluation over large North American river basins. J. Geophys. Res., 112, D21101, doi: 10.1029/2007JD008674.

    Article  Google Scholar 

  • Oleson, K. W., and Coauthors, 2004: Technical description of the community land model (CLM). NCAR/TN-461+STR, 186 pp.

    Google Scholar 

  • Peings, Y., and H. Douville, 2010: Influence of the Eurasian snow cover on the Indian summer monsoon variability in observed climatologies and CMIP3 simulations. Climate Dyn., 34, 643–660.

    Article  Google Scholar 

  • Popova, V., 2007: Winter snow depth variability over northern Eurasia in relation to recent atmospheric circulation changes. Inter. J. Climatol., 27, 1721–1733.

    Article  Google Scholar 

  • Rasch, P. J., and J. E. Kristjansson, 1998: A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J. Climate, 11(7), 1587–1614.

    Article  Google Scholar 

  • Robinson, D. A., and A. Frei, 2000: Seasonal variability of Northern Hemisphere snow extent using visible satellite data. Prof. Geogr., 52(2), 307–315.

    Article  Google Scholar 

  • Roesch, A., 2006: Evaluation of surface albedo and snow cover in AR4 coupled climate models. J. Geophys. Res., 111, D15111, doi: 10.1029/2005JD006473.

    Article  Google Scholar 

  • Rutter, N., and Coauthors, 2009: Evaluation of forest snow processes models (SnowMIP2). J. Geophys. Res., 114, D06111, doi: 10.1029/2008JD011063.

    Google Scholar 

  • Shackley, S., P. Young, S. Parkinson, and B. Wynne, 1998: Uncertainty, complexity and concepts of good science in climate change modelling: Are GCMs the best tools? Climatic Change, 38, 159–205.

    Article  Google Scholar 

  • Shi, X. J., B. Wang, X. H. Liu, M. H. Wang, L. J. Li, and D. Li, 2010: Aerosol indirect effects on warm clouds in the gridpoint atmospheric model of IAP LASG (GAMIL). Atmos. Oceanic Sci. Lett., 3, 237–241.

    Google Scholar 

  • Slater, A. G., and Coauthors, 2001: The representation of snow in land surface schemes: Results from PILPS 2(d). J. Hydrometeorology, 2, 7–25.

    Article  Google Scholar 

  • Slingo, J. M., 1987: The development and verification of a cloud prediction scheme for the ECMWF model. Quart. J. Roy. Meteor. Soc., 113, 899–927.

    Article  Google Scholar 

  • Sun, Z. A., and L. Rikus, 1999a: Improved application of exponential sum fitting transmissions to inhomogeneous atmosphere. J. Geophys. Res., 104, 6291–6303.

    Article  Google Scholar 

  • Sun, Z. A., and L. Rikus, 1999b: Parametrization of effective sizes of cirrus-cloud particles and its verification against observations. Quart. J. Roy. Meteor. Soc., 125, 3037–3055.

    Article  Google Scholar 

  • Voeikov, A. I., 1889: Snow cover, its effects of soil, climate, and weather and methods of investigation. Notes Russian Geograph. Soc. On General Geography, 18(2). (in Russian)

    Google Scholar 

  • Wang, B., H. Wan, Z. Z. Ji, X. Zhang, R. C. Yu, Y. Q. Yu, and H. L. Liu, 2004: Design of a new dynamical core for global atmospheric models based on some efficient numerical methods. Sci. China (A), 47, 4–21.

    Article  Google Scholar 

  • Willmott, C. J., and K. Matsuura, 2000: Terrestrial air temperature and precipitation: Monthly and annual climatologies. [Available online at http://climate.geog.udel.edu.]

    Google Scholar 

  • Willmott, C. J., and S. M. Robeson, 1995: Climatologically aided interpolation (CAI) of terrestrial air temperature. Int. J. Climatol., 15, 221–229.

    Article  Google Scholar 

  • Wu, R. G., and B. P. Kirtman, 2007: Observed relationship of spring and summer East Asian rainfall with winter and spring Eurasian snow. J. Climate, 20, 1285–1304.

    Article  Google Scholar 

  • Xie, P. P., and P. A. Arkin, 1996: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate, 9, 840–858.

    Article  Google Scholar 

  • Xie, P. P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558.

    Article  Google Scholar 

  • Xu, S. M., and Coauthors, 2012: Simulation of sea ice in FGOALS-g2: Climatology and late 20th century changes. Adv. Atmos. Sci., 30, 658–673, doi: 10.1007/s00376-013-2158-4.

    Article  Google Scholar 

  • Zhang, X. L., and X. Z. Liang, 1989: A numerical world ocean general circulation model. Adv. Atmos. Sci., 6, 44–61.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, K., Wang, B., Li, L. et al. Evaluation of snow depth and snow cover fraction simulated by two versions of the flexible global ocean-atmosphere-land system model. Adv. Atmos. Sci. 31, 407–420 (2014). https://doi.org/10.1007/s00376-013-3026-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-013-3026-y

Key words

Navigation