Advances in Atmospheric Sciences

, Volume 31, Issue 1, pp 118–130 | Cite as

The impact of global warming on the pacific decadal oscillation and the possible mechanism



The response of the Pacific Decadal Oscillation (PDO) to global warming according to the Fast Ocean Atmosphere Model (FOAM) and global warming comparison experiments of 11 IPCC AR4 models is investigated. The results show that North Pacific ocean decadal variability, its dominant mode (i.e., PDO), and atmospheric decadal variability, have become weaker under global warming, but with PDO shifting to a higher frequency. The SST decadal variability reduction maximum is shown to be in the subpolar North Pacific Ocean and western North Pacific (PDO center). The atmospheric decadal variability reduction maximum is over the PDO center.

It was also found that oceanic baroclinic Rossby waves play a key role in PDO dynamics, especially those in the subpolar ocean. As the frequency of ocean buoyancy increases under a warmer climate, oceanic baroclinic Rossby waves become faster, and the increase in their speed ratio in the high latitudes is much larger than in the low latitudes. The faster baroclinic Rossby waves can cause the PDO to shift to a higher frequency, and North Pacific decadal variability and PDO to become weaker.

Key words

Pacific Ocean decadal variability Pacific Decadal Oscillation global warming baroclinic Rossby waves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. An, S.-I., and B. Wang, 1999: Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J. Climate, 13, 2044–2055.CrossRefGoogle Scholar
  2. Biondi, F., G. Alexander, and D. R. Cayan, 2001: North Pacific decadal climate variability since 1661. J. Climate, 14, 5–10.CrossRefGoogle Scholar
  3. Chelton, D. B., and M. Schlax, 1996: Global observations of oceanic rossby waves. Science, 272, 234–238.CrossRefGoogle Scholar
  4. Chelton, D. B, R. A. DeSzoeke, M. G. Schlax, K. E. Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic rossby radius of deformation. J. Climate, 28, 433–460.Google Scholar
  5. D’Arrigo, R., R. Villalba, and G. Wiles, 2001: Tree-ring estimate of pacific decadal climate variability. Climate Dyn., 18, 219–224.CrossRefGoogle Scholar
  6. Deser, C., A. S. Phillips, and J W. Hurrell, 2004: Pacific interdecadal climate variability: Linkages between the tropics and the North Pacific during boreal winter since 1900. J. Climate, 17, 3109–3124.CrossRefGoogle Scholar
  7. D’Orgeville, M., and W. R. Peltier, 2009: Implications of both statistical equilibrium and global warming simulations with CCSM3. Part I: On the decadal variability in the North Pacific basin. J. Climate, 22, 5277–5297.CrossRefGoogle Scholar
  8. Gershunov, A., and T. P. Barnett, 1998: Interdecadal modulation of ENSO teleconnections. Bull. Amer. Meteor. Soc., 79, 2715–2725.CrossRefGoogle Scholar
  9. Gu, D., and S. G. H. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275, 805–807.CrossRefGoogle Scholar
  10. Guilyardi, E., A. Wittenberg, A. Fedorov, M. Collins, C. Wang, A. Capotondi, G. J. Oldenborgh, and T. Stockdale, 2009: Understanding El Niño in ocean-atmosphere general circulation models: Progress and challenges. Bull. Amer. Meteor. Soc., 90, 325–340.CrossRefGoogle Scholar
  11. Hu, Z.-Z., and B. Huang, 2009: Interferential impact of ENSO and PDO on dry and wet conditions in the U.S. Great Plains. J. Climate, 22, 6047–6065.CrossRefGoogle Scholar
  12. Huang, R. H., R. S. Cai, J. L. Chen, and L. T. Zhou, 2006: Interdecaldal variations of drought and flooding disasters in China and their association with the East Asian Climate System. Chinese J. Atmos. Sci., 30, 730–743.Google Scholar
  13. Jacob, R. L., 1997: Low frequency variability in a simulated atmosphere-ocean system. Ph.D. dissertation, Dept. of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, 155 pp.Google Scholar
  14. Jacobs, G. A., H. E. Hurlburt, J. C. Kindle, E. J. Metzger, J. L. Mitchell, W. J. Teague, and A. J. Wallcraft, 1994: Decadescale trans-Pacific propagation and warming effects of an El Niño anomaly. Nature, 370, 360–363.CrossRefGoogle Scholar
  15. Killworth, P. D., R. De Szoeke, and D. Chelton, 1997: The speed of observed and theoretical long extratropical planetary waves. J. Phys. Oceanogr., 27, 1946–1966.CrossRefGoogle Scholar
  16. Kleeman, R., J. P. McCreary Jr., and B. A. Klinger, 1999: A mechanism for generating ENSO decadal variability. Geophys. Res. Lett., 26, 1743–1746.CrossRefGoogle Scholar
  17. Kwon, Y. O., and C. Deser, 2007: North Pacific decadal variability in the community climate system model version 2. J. Climate, 20, 2416–2433.CrossRefGoogle Scholar
  18. Latif, M., and T. P. Barnett, 1994: Causes of decadal climate variability over the North Pacific and North America. Science, 266, 634–637.CrossRefGoogle Scholar
  19. Latif, M., and T. P. Barnett, 1996: Decadal climate variability over the North Pacific and North America: Dynamics and predictability. J. Climate, 9, 2407–2423.CrossRefGoogle Scholar
  20. Liu, Z., L. Wu, R. Gallimore, and R. Jacob, 2002: Search for the origins of Pacific decadal climate variability. Geophys. Res. Lett., 29(10), 1404, doi: 10.1029/2001GL013735.CrossRefGoogle Scholar
  21. Mann, M. E., and J. M. Lees, 1996: Robust estimation of background noise and signal detection in climatic time series. Climatic Change, 33, 409–445.CrossRefGoogle Scholar
  22. Mantua, N. J., and S. R. Hare, 2002: The Pacific decadal oscillation. Journal of Oceanography, 58, 35–44.CrossRefGoogle Scholar
  23. Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallance, and R. C. Francis, 1997: A Pacific decadal climate oscillation with impacts on salmon. Bull. Amer. Metetor. Soc., 78, 1069–1079.CrossRefGoogle Scholar
  24. Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B Mitchell, R. J. Stouffer, and K. E. Taylor, 2007: The WCRP CMIP3 multi-model dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 1383–1394.CrossRefGoogle Scholar
  25. Merryfield, W. J., 2006: Changes to ENSO under CO2 doubling in a multimodel ensemble. J. Climate, 19, 4009–4027.CrossRefGoogle Scholar
  26. Miller, A. J., and N. Schneider, 2000: Interdecadal climate regime dynamics in the North Pacific Ocean: theories, observations and ecosystem impacts. Progress in Oceanography, 47, 355–379.CrossRefGoogle Scholar
  27. Miller, A. J., F. Chai, S. Chiba, J. R. Moisan, and D. J. Neilson, 2004: Decadal-scale climate and ecosystem interactions in the North Pacific Ocean. Journal of Oceanography, 60, 163–188.CrossRefGoogle Scholar
  28. Minobe, S., 1999: Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: Role in climatic regime shifts. Geophys. Res. Lett., 26, 855–858.CrossRefGoogle Scholar
  29. Münnich, M., M. Latif, S. Venzke, and E. Maier-Reimer, 1998: Decadal oscillations in a simple coupled model. J. Climate, 11, 3309–3319.CrossRefGoogle Scholar
  30. Pierce, D. W., T. P. Barnett, N. Schneider, R. Saravanan, D. Dommenget, and M. Latif, 2001: The role of ocean dynamics in producing decadal climate variability in the North Pacific. Climate Dyn., 18, 51–70.CrossRefGoogle Scholar
  31. Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407–4443, doi: 10.1029/2002JD002670.CrossRefGoogle Scholar
  32. Saenko, O. A., 2006: Influence of global warming on baroclinic rossby radius in the ocean: A model intercomparison. J. Climate, 19, 1354–1360.CrossRefGoogle Scholar
  33. Saravanan, R., and J. C. McWilliams, 1998: Advective oceanatmosphere interaction: An analytical stochastic model with implications for decadal variability. J. Climate, 11, 165–188.CrossRefGoogle Scholar
  34. Sato, Y., S. Yukimoto, H. Tsujino, H. Ishizaki, and A. Noda, 2006: Response of North Pacific ocean circulation in a Kuroshio-resolving ocean model to an arctic oscillation (AO)-like change in Northern Hemisphere atmospheric circulation due to greenhouse-gas forcing. J. Meteor. Soc. Japan, 84, 295–309.CrossRefGoogle Scholar
  35. Schmittner, A., M. Latif, and B. Schneider, 2005: Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys. Res. Lett., 32, L23710, doi: 10.1029/2005GL024368.CrossRefGoogle Scholar
  36. Seager, R., Y. Kushnir, N. H. Naik, M. A. Cane, and J. Miller, 2001: Wind-driven shifts in the latitude of the Kuroshio-Oyashio extension and generation of SST anomalies on decadal timescales. J. Climate, 14, 4249–4265.CrossRefGoogle Scholar
  37. Stouffer, R. J., and Coauthors, 2006: Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19, 1365–1387.CrossRefGoogle Scholar
  38. Trenberth, K. E., and J. W. Hurrell, 1994: Decadal atmosphereocean variations in the Pacific. Climate Dyn., 9, 303–319.CrossRefGoogle Scholar
  39. Wang, B., 1995: Interdecadal changes in El Niño onset in the last four decades. J. Climate, 8, 267–285.CrossRefGoogle Scholar
  40. Wu, L., and Z. Liu, 2003: Decadal variability in the North Pacific: The eastern orth Pacific mode. J. Climate, 16, 3111–3131.CrossRefGoogle Scholar
  41. Wu, L., Z. Liu, R. Gallimore, R. Jacob, D. Lee, and Y. Zhong, 2003: Pacific decadal variability: The tropical pacific mode and the North Pacific mode. J. Climate, 16, 1101–1120.CrossRefGoogle Scholar
  42. Wu, L., Z. Liu, C. Li, and Y. Sun., 2007: Extratropical control of recent tropical Pacific decadal climate variability: A relay teleconnection. Climate Dyn., 28, doi: 10.1027/s00382-006-0198-5.Google Scholar
  43. Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, doi: 10.1029/2005GL023684.CrossRefGoogle Scholar
  44. Zhong, Y., and Z. Liu, 2009: On the mechanism of pacific multidecadal climate variability in CCSM3: The role of the subpolar North Pacific ocean. J. Phys. Oceanogr., 39, 2052–2076.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Physical Oceanography LaboratoryOcean University of ChinaQingdaoChina
  2. 2.Navy Marine Hydrometeorological Center of the Chinese PLABeijingChina

Personalised recommendations