Skip to main content

Simulating urban flow and dispersion in Beijing by coupling a CFD model with the WRF model

Abstract

The airflow and dispersion of a pollutant in a complex urban area of Beijing, China, were numerically examined by coupling a Computational Fluid Dynamics (CFD) model with a mesoscale weather model. The models used were Open Source Field Operation and Manipulation (OpenFOAM) software package and Weather Research and Forecasting (WRF) model. OpenFOAM was firstly validated against wind-tunnel experiment data. Then, the WRF model was integrated for 42 h starting from 0800 LST 08 September 2009, and the coupled model was used to compute the flow fields at 1000 LST and 1400 LST 09 September 2009. During the WRF-simulated period, a high pressure system was dominant over the Beijing area. The WRF-simulated local circulations were characterized by mountain valley winds, which matched well with observations. Results from the coupled model simulation demonstrated that the airflows around actual buildings were quite different from the ambient wind on the boundary provided by the WRF model, and the pollutant dispersion pattern was complicated under the influence of buildings. A higher concentration level of the pollutant near the surface was found in both the step-down and step-up notches, but the reason for this higher level in each configurations was different: in the former, it was caused by weaker vertical flow, while in the latter it was caused by a downward-shifted vortex. Overall, the results of this study suggest that the coupled WRF-OpenFOAM model is an important tool that can be used for studying and predicting urban flow and dispersions in densely built-up areas.

This is a preview of subscription content, access via your institution.

References

  • Allwine, K. J., J. H. Shinn, G. E. Streit, K. L. Clawson, and M. Brown, 2002: An overview of URBAN 2000: A multi-scale field study of dispersion through an urban environment. Bull. Amer. Meteor. Soc., 83, 521–536.

    Article  Google Scholar 

  • Assimakopoulos, V. D., H. M. ApSimon, and N. Moussiopoulos, 2003: A numerical study of atmospheric pollutant dispersion in different two-dimensional street canyon configurations. Atmos. Environ., 37, 4037–4049.

    Article  Google Scholar 

  • Baik, J. J., R. S. Park, H. Y. Chun, and J. J. Kim, 2000: A laboratory model of urban street-canyon flows. J. Appl. Meteor. Climatol., 39, 1592–1600.

    Article  Google Scholar 

  • Baik, J. J., S. B. Park, and J. J. Kim, 2009: Urban flow and dispersion simulation using a CFD model coupled to a mesoscale model. J. Appl. Meteor. Climatol., 48, 1667–1681.

    Article  Google Scholar 

  • Brown, M., M. Leach, J. Reisner, D. Stevens, S. Smith, S. Chin, S. Chan, and B. Lee, 2000: Numerical modeling from mesoscale to urban scale to building scale. Proc. the Third Symposiumon Urban Environment, Davis, CA, Amer. Meteor. Soc., 64–65.

    Google Scholar 

  • Chan, S. T., and M. J. Leach, 2007: A validation of FEM3MP with Joint Urban 2003 data. J. Appl. Meteor. Climatol., 46, 2127–2146.

    Article  Google Scholar 

  • Chang, C. H., and R. N. Meroney, 2003: Concentration and flow distributions in urban street canyons: Wind tunnel and computational data. Journal of Wind Engineering and Industrial Aerodynamics, 91, 1141–1154.

    Article  Google Scholar 

  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569–585.

    Article  Google Scholar 

  • Di Sabatino, S., R. Buccolieri, B. Pulvirenti, and R. E. Britter, 2007: Simulations of pollutant dispersion within idealised urban-type geometries with CFD and integral models. Atmos. Environ., 41(37), 8316–8329.

    Article  Google Scholar 

  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two dimensional model. J. Atmos. Sci., 46, 3077–3107.

    Article  Google Scholar 

  • Ferziger, J. H., and M. Peric, 2001: Computational Methods for Fluid Dynamics. 3rd ed., Springer, 188–202.

    Google Scholar 

  • Grisogono, B., and J. Oerlemans, 2002: Justifying the WKB approximation in pure katabatic flows. Tellus (A), 54, 453–462.

    Article  Google Scholar 

  • Gromke, C., R. Buccolieri, S. Di Sabatino, and B. Ruck, 2008: Dispersion study in a street canyon with tree planting by means of wind tunnel and numerical investigations—Evaluation of CFD data with experimental data. Atmos. Environ., 42(37), 8640–8650.

    Article  Google Scholar 

  • Janjic, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118, 1429–1443.

    Article  Google Scholar 

  • Janjic, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927–945.

    Article  Google Scholar 

  • Jericevic, A., L. Kraljevic, B. Grisogono, H. Fagerli, and Z. Vecenaj, 2010: Parameterization of vertical diffusion and the atmospheric boundary layer height determination in the EMEP model. Atmos. Chem. Phys., 10(2), 341–364.

    Article  Google Scholar 

  • Kaplan, H., and N. Dinar, 1996: A lagrangian dispersion model for calculating concentration distribution within a built-up domain. Atmos. Environ., 30(24), 4197–4207.

    Article  Google Scholar 

  • Kusaka, H., and F. Kimura, 2004: Thermal effects of urban canyon structure on the nocturnal heat island: Numerical experiment using a mesoscale model coupled with an urban canopy model. J. Appl. Meteor., 43, 1899–1910.

    Article  Google Scholar 

  • Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329–358.

    Article  Google Scholar 

  • Li, L., F. Hu, J. Jiang, and X. Cheng, 2007: An application of the RAMS/FLUENT system on the multi-scale numerical simulation of the urban surface layer—A preliminary study. Adv. Atmos. Sci., 24(2), 271–280, doi: 10.1007/s00376-007-0271-y.

    Article  Google Scholar 

  • Liu, H., B. Liang, F. Zhu, B. Zhang, and J. Sang, 2003: A laboratory model for the flow in urban street canyons induced by bottom heating. Adv. Atmos. Sci., 20(4), 554–564.

    Article  Google Scholar 

  • Martilli, A., A. Clappier, and M. W. Rotach, 2002: An urban surface exchange parameterization for mesoscale models. Bound-Layer Meteor., 104, 261–304.

    Article  Google Scholar 

  • Mestayer, P. G., and Coauthors, 2005: The urban boundary-layer field campaign in Marseille (UBL/CLU ESCOMPTE): Set-up and first results. Bound.-Layer Meteor., 114, 315–365.

    Article  Google Scholar 

  • Miao, S., and F. Chen, 2008: Formation of horizontal convective rolls in urban areas. Atmospheric Research, 89, 298–304.

    Article  Google Scholar 

  • Miao, S., P. Li, and X. Wang, 2009: Builiding morphological characteristics and their effect on the wind in Being. Adv. Atmos. Sci., 26(6), 1115—1124, doi: 10.1007/s0037600-009-7223-7.

  • Miao, S., F. Chen, M. A. LeMone, M. Tewari, Q. Li, and Y. Wang, 2009: An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing. J. Appl. Meteor. Climatol., 48, 484–501.

    Article  Google Scholar 

  • Pavageau, M., and M. Schatzmann, 1999: Wind tunnel measurements of concentration fluctuations in an urban street canyon. Atmos. Environ., 33, 3961–3971.

    Article  Google Scholar 

  • Pope, S. B., 2001: Turbulent Flows. Cambridge University Press, 581–582.

    Google Scholar 

  • Rotach, M. W., and Coauthors, 2005: BUBBLE—An urban boundary layer meteorology project. Theor. Appl. Climatol., 81, 231–261.

    Article  Google Scholar 

  • Salamanca, F., A. Martilli, M. Tewari, and F. Chen, 2011: A study of the urban boundary layer using different urban parameterizations and high resolution urban canopy parameters with WRF. J. Appl. Meteor. Climatol., 50, 1107–1128.

    Article  Google Scholar 

  • Tewari, M., H. Kusaka, F. Chen, W. J. Coirier, S. Kim, A. A. Wyszogrodzki, and T. T. Warner, 2010: Impact of coupling a microscale computational fluid dynamics model with a mesoscale model on urban scale contaminant transport and dispersion. Atmos. Research, 96, 656–664.

    Article  Google Scholar 

  • Uebara, K., S. Murakami, S. Oikawa, and S. Wakamatsu, 2000: Wind tunnel experiments on how thermal stratification affects flow in and above urban street canyons. Atmos. Environ., 34, 1553–1562.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhua Liu  (刘树华).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Miao, Y., Liu, S., Chen, B. et al. Simulating urban flow and dispersion in Beijing by coupling a CFD model with the WRF model. Adv. Atmos. Sci. 30, 1663–1678 (2013). https://doi.org/10.1007/s00376-013-2234-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-013-2234-9

Key words

  • WRF model
  • CFD model
  • OpenFOAM
  • dispersion