Skip to main content
Log in

Aerosol spectra and new particle formation observed in various seasons in Nanjing

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The aerosol number spectrum and gas pollutants were measured and the new particle formation (NPF) events were discussed in Nanjing. The results showed that the size distributions of aerosol number concentrations exhibited distinct seasonal variations, implying the relations of particle sizes and their sources and sinks. The number concentrations of particles in the nuclei mode (10–30 nm), Aitken mode (30–100 nm), accumulation mode (100–1000 nm) and coarse mode (>1 μm) varied in the order of summer > spring > autumn, summer > autumn > spring, autumn > summer > spring, and spring > autumn >summer, respectively. The diurnal variation of total aerosol number concentrations showed three peaks in all observed periods, which corresponded to two rush hours and the photochemistry period at noon. In general, the NPF in summer occurred under the conditions of east winds and dominant air masses originating from marine areas with high relative humidity (50%–70%) and strong solar radiations (400–700 W m−2). In spring, the NPF were generally accompanied by low relative humidity (14%–30%) and strong solar radiations (400–600 W m−2). The new particle growth rates (GR) were higher in the summertime in the range of 10–16 nm h−1. In spring, the GR were 6.8–8.3 nm h−1. Under polluted air conditions, NPF events were seldom captured in autumn in Nanjing. During NPF periods, positive correlations between 10–30 nm particles and O3 were detected, particularly in spring, indicating that NPF can be attributed to photochemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Birmili, W., H. Berresheim, C. Plass-Dúlmer, T. Elste, S. Gilge, A. Wiedensohler, and U. Uhrner, 2003: The Hohenpeissenberg aerosol formation experiment (HAFEX): A long-term study including size-resolved aerosol, H2SO4, OH and monoterpenes measurements. Atmos. Chem. Phys., 3, 361–376.

    Article  Google Scholar 

  • Boy, M., and Coauthors, 2005: Sulphuric acid closure and contribution to nucleation mode particle growth. Atmos. Chem. Phys., 5, 863–878.

    Article  Google Scholar 

  • Castro, A., E. Alonso-Blanco, M. González-Colino, A. I. Calvo, M. Fernández-Raga, and R. Fraile, 2010: Aerosol size distribution in precipitation events in León, Spain. Atmospheric Research, 96, 421–435.

    Article  Google Scholar 

  • Dal Maso, M., M. Kulmala, I. Riipinen, R. Wagner, T. Hussein, P. P. Aalto, and K.E. J. Lehtinen, 2005: Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyytiälä, Finland. Boreal Environment Research, 10(5), 323–336.

    Google Scholar 

  • Donaldson, K., D. Brown, A. Clouter, R. Duffin, W. Mac-Nee, L. Renwick, L. Tran, and V. Stone, 2002: The pulmonary toxicology of ultrafine Pparticles. Journal of Aerosol Medicine, 15(2), 213–220.

    Article  Google Scholar 

  • Dunn, M. J., J. L. Jimenez, D. Baumgardner, T. Castro, P. H. McMurry, and J. N. Smith, 2004: Measurements of Mexico city nanoparticle size distributions: Observations of new particle formation and growth. Geophys. Res. Lett., 31(10), L10102, doi: 10.1029/2004GL01948.

    Article  Google Scholar 

  • Gao, J., T. Wang, X. Zhou, W. Wu, and W. Wang, 2009: Measurement of aerosol number size distributions in the Yangtze River Delta in China: Formation and growth of particles under polluted conditions. Atmos. Environ., 43(4), 829–836.

    Article  Google Scholar 

  • Gong, Y. G., M. Hu, W. W. Song, J. Gao, F. Liu, and Y. H. Zhang, 2011: Atmospheric nucleation rate at Xinken site in the Pearl River Delta of China. Environmental Science, 32(4), 930–935. (in Chinese)

    Google Scholar 

  • Guo, H., D. W. Wang, K. Cheung, Z. H. Ling, C. K. Chan, and X. H. Yao, 2012: Atmospheric chemistry and physics observation of aerosol size distribution and new particle formation at a mountain site in subtropical Hong Kong. Atmos. Chem. Phys., 12, 9923–9939, doi: 10.5194/acp-12-9923-2012

    Article  Google Scholar 

  • Holmes, N. S., 2007: A review of particle formation events and growth in the atmosphere in the various environments and discussion of mechanistic implications. Atmos. Environ., 41(10), 2183–2201.

    Article  Google Scholar 

  • Horvath, H., M. Kasaharat, and P. Pesava, 1996: The size distribution and composition of the atmospheric aerosol at a rural and nearby urban location. Journal of Aerosol Science, 3, 417–435.

    Article  Google Scholar 

  • Hu, M., L. Y. He, X. F. Huang, and Z. J. Wu, 2009. Atmospheric Fine Particles and the Physical and Chemical Characteristics of Ultrafine Particles, Origin and Formation Mechanism in Beijing. Science Press, Beijing, 241-277.

  • Hussein, T., and Coauthors, 2009: Time span and spatial scale of regional new particle formation events over Finland and southern Sweden. Atmos. Chem. Phys., 9, 4699–4716.

    Article  Google Scholar 

  • Jeong, C. H., P. K. Hopke, D. Chalupa, and M. Utell, 2004: Characteristics of Nucleation and Growth Events of Ultrafine Particles Measured in Rochester, NY. Environmental science & technology, 38(7), 933–1940.

    Article  Google Scholar 

  • Jung, C. H., and Y. P. Kim, 2006: Numerical estimation of the effects of condensation and coagulation on visibility using the moment method. Journal of Aerosol Science, 37(2), 143–161.

    Article  Google Scholar 

  • Kuang, C., P. H. McMurry, and A. V. McCormick, 2009: Determination of cloud condensation nuclei production from measured new particle formation events. Geophys. Res. Lett., 36(9), doi: 10.1029/2009GL037584.

    Google Scholar 

  • Kulmala, M., H. Vehkamäki, T. Petäjä, M. Dal Maso, A. Lauri, V.-M. Kerminen, W. Birmili, and P. H. Mc-Murry, 2004a: Formation and growth rates of ultra-fine atmospheric particles: A review of observations. Aerosol Science, 35(2), 143–176.

    Article  Google Scholar 

  • Kulmala, M., and Coauthors, 2004b: Initial steps of aerosol growth. Atmos. Chem. Phys., 4, 2553–2560.

    Article  Google Scholar 

  • Li, J. X., Y. Zhao, L. J. Li, X. G. Yang, H. J. Li, X. Dong, and Y. T. Yang, 2008: Characterization of ambient air pollution in Beijing caused by agricultural burning. Acta Scientiae Circumstantiae, 28(9), 1904–1909. (in Chinese)

    Google Scholar 

  • Li, W., L. Shao, Z. Wang, R. Shen, S. Yang, and U. Tang, 2010: Size, composition, and mixing state of individual aerosol particles in a South China coastal city. Journal of Environmental Sciences, 22(4), 561–569.

    Article  Google Scholar 

  • Li, Y. Q., B. Zhu, and J. L. An, 2011: A comparative of long-path and traditional point atmospheric pollutants monitoring technique. Journal of Nanjing University of Information Science and Technology: Natural Science Edition, 3(2), 128–136.

    Google Scholar 

  • Mäkelä, J. M., and Coauthors, 1997: Observations of ultrafine particle formation and growth in boreal forest. Geophys. Res. Lett., 24(10), 1219–1222.

    Article  Google Scholar 

  • McMurry, P. H., and K. S. Woo, 2002: Size distributions of 3-100nm urban Atlanta aerosols: Measurement and observations. Journal of Aerosol Medicine, 15(2), 169–178.

    Article  Google Scholar 

  • Mönkkönen, P., I. K. Koponen, K. E. J. Lehtinen, K. Hämeri, R. Uma, and M. Kulmala, 2005: Measurements in a highly polluted Asian mega city: Observations of aerosol number size distribution, modal parameters and nucleation events. Atmos. Chem. Phys., 5, 57–66.

    Article  Google Scholar 

  • Natusch, D. F. S., and J. R. Wallace, 1974, Urban aerosol toxicity:The influence of particle size. Science, 186(4165), 695–699.

    Article  Google Scholar 

  • Odum, J. R., T. P. W. Jungkamp, R. J. Griffin, R. C. Flagan, and J. H. Seinfeld, 1997: The atmospheric aerosol-forming potential of whole gasoline vapor. Science, 276(5309), 96–99.

    Article  Google Scholar 

  • Opsis, A. B., 2003: Quality assurance and quality control using Opsis analysers for air quality monitoring (Version 1.4). Opsis A B, Sweden, 9–69.

    Google Scholar 

  • Petaja, T., and Coauthors, 2009, Sulfuric acid and OH concentrations in a boreal forest site. Atmos. Chem. Phys., 9, 7435–7448, doi: 10.5194/acp-9-7435-2009

    Article  Google Scholar 

  • Putaud, J. P., R. V. Dingenen, and A. Alastuey, 2010: A European aerosol phenomenology-3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across. Europe Atmospheric Environment, 44, 1308–1320.

    Article  Google Scholar 

  • Qian, L., Y. Yin, Y. Q. Tong, W. W. Wang, and Y. X. Wei, 2008: Characteristics of size distributions of atmospheric fine particles in the north suburban area of Nanjing. China Environmental Science, 28(1), 18–22. (in Chinese)

    Google Scholar 

  • Riipinen, I., and Coauthors, 2007: Connections between atmospheric sulfuric acid and new particle formation during QUEST III–IV campaigns in Heidelberg and Hyytiälä. Atmos. Chem. Phys., 7, 1899–1914.

    Article  Google Scholar 

  • Shen, X. J., and Coauthors, 2011: First long-term study of particle number size distributions and new particle formation events of regional aerosol in the North China Plain. Atmos. Chem. Phys., 11, 1565–1580.

    Article  Google Scholar 

  • Stanier, C. O., A. Y. Khlystov, and S. N. Pandis, 2004a: Ambient aerosol size distributions and number concentrations measured during the Pittsburgh air quality study (PAQS). Atmos. Environ., 38(20), 3275–3284.

    Article  Google Scholar 

  • Stanier, C. O., A. Y. Khlystov, and S. N. Pandis, 2004b: Nucleation events during the Pittsburgh air quality study: Description and relation to key meteorological, gas phase, and aerosol parameters. Aerosol Science and Technology, 38(S1), 253–264.

    Article  Google Scholar 

  • Wang, L., A. F. Khalizov, J. Zheng, W. Xu, Y. Ma, V. Lal, and R. Zhang, 2010: Atmospheric nanoparticles formed from heterogeneous reactions of organics, Nature Geoscience, 3, 238–242, doi: 10.1038/ngeo778.

    Article  Google Scholar 

  • Wehner, B., W. Birmili, and T. Gnauk, 2002: Particle number size distributions in a street canyon and their transformation into the urban air background: Measurements and a simple model study. Atmos. Environ., 36, 2215–2223.

    Article  Google Scholar 

  • Wehner, B., and A. Wiedensohler, 2003: Long term measurements of submicrometer urban aerosols: Statistical analysis for correlations with meteorological conditions and trace gases. Atmos. Chem. Phys., 3, 867–879.

    Article  Google Scholar 

  • Wehner, B., A. Wiedensohler, T. M. Tuch, Z. J. Wu, M. Hu, J. Slanina, and C. S. Kiang, 2004: Variability of the aerosol number size distribution in Beijing, China: New particle formation, dust storms, and high continental background. Geophys. Res. Lett., 31(22), doi: 10.1029/2004GL021596.

    Google Scholar 

  • Wu, Z. J., and Coauthors, 2007: New particle formation in Beijing, China: Statistical analysis of a 1-year data set. J. Geophys. Res., 112(D9), doi: 10.1029/2006JD007406.

    Google Scholar 

  • Yin, C., B. Zhu, Y. C. Cao, J. F. Su, X. Y. Wang, and H. Wang, 2011: The origin of crop residue burning impact on air quality of Nanjing. China Environmental Science, 31(2), 207–213. (in Chinese)

    Google Scholar 

  • Zhang, B. K., 1934: The Duration of Four Seasons in China. Acta Geographica Sinica, 1(1), 29–74. (in Chinese)

    Google Scholar 

  • Zhang, R., I. Suh, J. Zhao, D. Zhang, E. C. Fortner, X. Tie, L. T. Molina, and M. J. Molina, 2004: Atmospheric new particle formation enhanced by organic acids. Science, 304(5676), 1487–1490.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhu  (朱 彬).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, B., Wang, H., Shen, L. et al. Aerosol spectra and new particle formation observed in various seasons in Nanjing. Adv. Atmos. Sci. 30, 1632–1644 (2013). https://doi.org/10.1007/s00376-013-2202-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-013-2202-4

Key words

Navigation