Skip to main content
Log in

Case studies of sprite-producing and non-sprite-producing summer thunderstorms

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Three summer thunderstorms in the eastern region of China were analyzed in detail using multiple data, including Doppler radar, lightning location network, TRMM (Tropical Rainfall Measuring Mission), MTSAT (Multi-Function Transport Satellite) images, NCEP (National Centers for Environmental Prediction) Reanalysis, and radiosonde. Two of the three storms were sprite-producing and the other was non-spriteproducing. The two sprite-producing storms occurred on 1–2 August and 27–28 July 2007, producing 16 and one sprite, respectively. The non-sprite-producing storm occurred on 29–30 July 2007. The major objective of the study was to try to find possible differences between sprite-producing and non-sprite producing storms using the multiple datasets. The results showed that the convection in the 1–2 August storm was the strongest compared with the other storms, and it produced the largest number of sprites. Precipitation ice, cloud ice and cloud water content in the convective regions in the 1–2 August storm were larger than in the other two storms, but the opposite was true in the weak convective regions. The storm microphysical properties along lines through parent CG (cloud-to-ground lightning) locations showed no special characteristics related to sprites. The flash rate evolution in the 1–2 August storm provided additional confirmation that major sprite activity coincides with a rapid decrease in the negative CG flash rate. However, the evolution curve of the CG flash rate was erratic in the sprite-producing storm on 27–28 July, which was significantly different from that in the 1–2 August storm. The average positive CG peak current in sprite-producing storms was larger than that in the non-sprite-producing one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrington-Leigh, C. P., U. S. Inan, M. Stanley, and S. A. Cummer, 1999: Sprites triggered by negative lightning discharges. Geophy. Res. Lett., 26(24), 3605–3608.

    Article  Google Scholar 

  • Barrington-Leigh, C. P., U. S. Inan, and M. Stanley, 2001: Identification of sprites and elves with intensified video and broadband array photometry. J. Geophys. Res., 106(A2), 1741–1750.

    Article  Google Scholar 

  • Bell, T. F., S. C. Reising, and U. S. Inan, 1998: Intense continuing currents following positive cloudto-ground lightning associated with sprites. Geophys. Res. Lett., 25(8), 1285–1288.

    Article  Google Scholar 

  • Boccippio, D. J., E. R. Williams, S. J. Heckman, W. A. Lyons, I. T. Baker, and R. Boldi, 1995: Sprites, ELF transients, and positive ground strokes. Science, 269(5227), 1088–1091.

    Article  Google Scholar 

  • Chen, A. B., and Coauthors, 2008: Global distributions and occurrence rates of transient luminous events. J. Geophys. Res., 113(A08306), doi: 10.1029/2008JA013101.

    Google Scholar 

  • Cummer, S. A., 2003: Current moment in spriteproducing lightning. Journal of Atmospheric and Solar-Terrestrial Physics, 65, 499–508.

    Article  Google Scholar 

  • Cummins, K. L., M. J. Murphy, E. A. Bardo, W. L. Hiscox, and R. B. Pyle, 1998: A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res., 103(D8), 9035–9044.

    Article  Google Scholar 

  • Feng, G. L., X. S. Qie, T. Yuan, and S. Z. Niu, 2007: Lightning activity and precipitation structure of hailstorms. Sci. China (D), 50(4), 629–639.

    Article  Google Scholar 

  • Franz, R. C., R. J. Nemzek, and J. R. Winckler, 1990: Television image of a large upward electrical discharge above a thunderstorm system. Science, 249(4964), 48–51.

    Article  Google Scholar 

  • Ganot, M., Y. Yair, C. Price, B. Ziv, Y. Sherez, E. Greenberg, A. Devir, and R. Yaniv, 2007: First detection of transient luminous events associated with winter thunderstorms in the eastern Mediterranean. Geophy. Res. Lett., 34(L12801), doi: 10.1029/2007GL029258.

    Google Scholar 

  • Gauthier M.L., W. A. Petersen, L. D. Carey, and H. J. Christian Jr., 2006: Relationship between cloud-toground lightning and precipitation ice mass: A radar study over Houston. Geophys. Res. Lett., 33, L20803, doi: 10.1029/2006GL027244.

    Article  Google Scholar 

  • Greenberg, E., C. Price, Y. Yair, M. Ganot, J. Bor, and G. Satori, 2007: ELF transients associated with sprites and elves in eastern Mediterranean winter thunderstorms. Journal of Atmospheric and Solar-Terrestrial Physics, 69, 1569–1586.

    Article  Google Scholar 

  • Hardman, S., R. L. Dowden, J. B. Brundell, J. L. Bahr, Z. Kawasaki, and C. J. Rodger, 2000: Sprite observations in the northern territory of Austrarlia. J. Geophys. Res., 105(D4), 4689–4697.

    Article  Google Scholar 

  • Hayakawa, M., T. Nakamura, Y. Hobara, and E. Williams, 2004: Observation of sprites over the Sea of Japan and conditions for lightning-induced sprites in winter. J. Geophys. Res., 109(A01312), doi: 10.1029/2003JA009905.

    Google Scholar 

  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic. Technol., 15(3), 809–817.

    Article  Google Scholar 

  • Lang, T. J., W. A. Lyons, S. A. Rutledge, J. D. Meyer, D. R. MacGorman, and S. A. Cummer, 2010: Transient luminous events above two mesoscale convective systems: Storm structure and evolution. J. Geophys. Res., 115(A00E22), doi: 10.1029/2009JA014500.

    Google Scholar 

  • Liu, D. X., X. S. Qie, Y. J. Xiong, and G. L. Feng, 2011: Evolution of the total lightning activity in a leadingline and trailing stratiform mesoscale convective system over Beijing. Adv. Atmos. Sci., 28(4), 866–878, doi: 10.1007/s00376-010-0001-8.

    Article  Google Scholar 

  • Lyons, W. A., 1996: Sprite observations above the U.S. High Plains in relation to their parent thunderstorm systems. J. Geophys. Res., 101(D23), 29641–29652.

    Article  Google Scholar 

  • Lyons, W. A., E. R. Williams, S. A. Cummer, and M. A. Stanley, 2003: Characteristics of spriteproducing positive cloud-to-ground lightning during the19 July 2000 STEPS mesoscale convective systems. Mon.Wea. Rev., 131, 2417–2427.

    Article  Google Scholar 

  • Marshall, R. A., U. S. Inan, and W. A. Lyons, 2007: Very low frequency sferic bursts, sprites, and their association with lightning activity. J. Geophys. Res., 112(D22105), doi: 10.1029/2007JD008857.

    Google Scholar 

  • Neubert, T., T. H. Allin, H. Stenbaek-Nielsen, and E. Blanc, 2001: Sprites over Europe. Geophys. Res. Lett., 28(18), 3585–3588.

    Article  Google Scholar 

  • Pinto, O. Jr., and Coauthours, 2004: Thunderstorm and lightning characteristics associated with sprites in Brazil. Geophys. Res. Lett., 31(L13103), doi: 10.1029/2004GL020264.

    Google Scholar 

  • Qie, X. S., R. B. Jiang, C. X. Wang, J. Yang, J. F. Wang, and D. X. Liu, 2011: Simultaneously measured current, luminosity, and electric field pulses in a rocket-triggered lightning flash. J. Geophys. Res., 116(D10102), doi: 10.1029/2010JD015331.

    Google Scholar 

  • São Sabbas, F. T., D. D. Sentman, E. M. Wescott, O. Pinto, O. Mendes, and M. J. Taylor, 2003: Statistical analysis of space-time relationships between sprites and lightning. Journal of Atmospheric and Solar-Terrestrial Physics, 65, 525–535.

    Article  Google Scholar 

  • São Sabbas, F. T., and Coauthors, 2010: Observations of prolific transient luminous event production above a mesoscale convective system in Argentina during the Sprite2006 Campaign in Brazil. J. Geophys. Res., 115(A00E58), doi: 10.1029/2009JA014857.

    Google Scholar 

  • Soula, S., O. A. van der Velde, J. Montanya, T. Neubert, O. Chanrion, and M. Ganot, 2009: Analysis of thunderstorm and lightning activity associated with sprites observed during the EuroSprite campaigns: Two case studies. Atmospheric Research, 91, 514–528.

    Article  Google Scholar 

  • Soula, S., and Coauthors, 2010: Characteristics and conditions of production of transient luminous events observed over a maritime storm. J. Geophys. Res., 115(D16118), doi: 10.1029/2009JD012066.

    Google Scholar 

  • Su, H. T., R. R. Hsu, A. B. Chen, Y. J. Lee, and L. C. Lee, 2002: Observation of sprites over the Asian continent and over oceans around Taiwan. Geophy. Res. Lett., 29(4), doi: 10.1029/2001GL013737.

    Google Scholar 

  • Suzuki, T., M. Hayakawa, Y. Matsudo, and K. Michimoto, 2006: How do winter thundercloud systems generate sprite-inducing lightning in the Hokuriku area of Japan? Geophys. Res. Lett., 33(L10806), doi: 10.1029/2005GL025433.

    Google Scholar 

  • van der Velde, O. A., J. Montanyà, S. Soula, N. Pineda, and J. Bech, 2010: Spatial and temporal evolution of horizontally extensive lightning discharges associated with sprite-producing positive cloud-toground flashes in northeastern Spain. J. Geophys. Res., 115(A00E56), doi: 10.1029/2009JA014773.

    Google Scholar 

  • Wescott, E. M., H. C. Stenbaek-Nielsen, D. D. Sentman, M. J. Heavner, D. R. Moudry, and F. T. Sâo Sabbas, 2001: Triangulation of sprites, associated halos and their possible relation to causative lightning and micrometeors. J. Geophys. Res., 106(A6), 10467–10477.

    Article  Google Scholar 

  • Williams, E., E. Downes, R. Boldi, W. Lyons, and S. Heckman, 2007: Polarity asymmetry of sprite-producing lightning: A paradox? Radio. Sci., 42(RS2S17), doi: 10.1029/2006RS003488.

    Google Scholar 

  • Winckler, J. R., 1995: Further observations of cloudionosphere electrical discharges above thunderstorms. J. Geophys. Res., 100(D7), 14335–14345.

    Article  Google Scholar 

  • Winckler, J, R., 1998: Optical and VLF radio observations of sprites over a frontal storm viewed from O’Brien Observatory of the University of Minnesota. Journal of Atmospheric and Solar-Terrestrial Physics, 60(7-9), 679–688.

    Article  Google Scholar 

  • Winckler, J. R., W. A. Lyons, T. E. Nelson, and R. J. Nemzek, 1996: New high-resolution ground-based studies of sprites. J. Geophys. Res., 101(D3), 6997–7004.

    Article  Google Scholar 

  • Yair, Y., and Coauthors, 2004: New observations of sprites from the space shuttle. J. Geophys. Res., 109(D15201), doi: 10.1029/2003JD004497.

    Google Scholar 

  • Yair, Y., and Coauthors, 2009: Optical observations of transient luminous events associated with winter thunderstorms near the coast of Israel. Atmospheric Research, 91(2-4), 529–537.

    Article  Google Scholar 

  • Yang, J., X. S. Qie, G. S. Zhang, Y. Zhao, and T. Zhang, 2008: Red sprites over thunderstorms in the coast of Shandong province, China. Chinese Science Bulletin, 53(7), 1079–1086.

    Article  Google Scholar 

  • Yang, J., X. S. Qie, and G. L. Feng, 2013: Characteristics of one sprite-producing summer thunderstorm. Atmospheric Research, 127, 90–115, doi: 10.1016/j.atmosres.2011.08.001.

    Article  Google Scholar 

  • Zhang, Y. J., Q. Meng, and W. T. Lü, 2006: Charge structures and cloud-to-ground lightning discharges characteristics in two supercell thunderstorms. Chinese Science Bulletin, 51, 198–212.

    Article  Google Scholar 

  • Zhao, Z. K., X. S. Qie, and T. L. Zhang, 2010: Electric field soundings and the charge structure within an isolated thunderstorm. Chinese Science Bulletin, 55, 872–876.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Yang  (杨 静).

Additional information

Sponsored by Sate Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Yang, M., Liu, C. et al. Case studies of sprite-producing and non-sprite-producing summer thunderstorms. Adv. Atmos. Sci. 30, 1786–1808 (2013). https://doi.org/10.1007/s00376-013-2120-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-013-2120-5

Key words

Navigation