Abstract
This study investigates the impact of rain snow threshold (RST) temperatures on snow depth simulation using the Community Land Model (CLM) and the Weather Research and Forecasting model (WRF—coupled with the CLM and hereafter referred to as WRF_CLM), and the difference in impacts. Simulations were performed from 17 December 1994 to 30 May 1995 in the French Alps. Results showed that both the CLM and the WRF_CLM were able to represent a fair simulation of snow depth with actual terrain height and 2.5°C RST temperature. When six RST methods were applied to the simulation using WRF_CLM, the simulated snow depth was the closest to observations using 2.5°C RST temperature, followed by that with Pipes’, USACE, Kienzle’s, Dai’s, and 0°C RST temperature methods. In the case of using CLM, simulated snow depth was the closest to the observation with Dai’s method, followed by with USACE, Pipes’, 2.5°C RST temperature, Kienzle’s, and 0°C RST temperature method. The snow depth simulation using the WRF_CLM was comparatively sensitive to changes in RST temperatures, because the RST temperature was not only the factor to partition snow and rainfall. In addition, the simulated snow related to RST temperature could induce a significant feedback by influencing the meteorological variables forcing the land surface model in WRF_CLM. In comparison, the above variables did not change with changes in RST in CLM. Impacts of RST temperatures on snow depth simulation could also be influenced by the patterns of temperature and precipitation, spatial resolution, and input terrain heights.
This is a preview of subscription content,
to check access.References
Auer, A. H., 1974: The rain versus snow threshold temperatures. Weatherwise, 27(2), 67–67, doi: 10.1080/00431672.1974.9931684.
Barnett, T. P., L. Dumenil, U. Schlese, E. Roeckner, and M. Latif, 1989: The effect of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci., 46(5), 661–685.
Belair, S., R. Brown, J. Mailhot, B. Bilodeau, and L. P. Crevier, 2003: Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part II: Cold season results. Journal of Hydrometeorology, 4(2), 371–386.
Boone, A., and P. Etchevers, 2001: An intercomparison of three snow schemes of varying complexity coupled to the same land surface model: Local-scale evaluation at an Alpine site. Journal of Hydrometeorology, 2(4), 374–394.
Braun, L. N., and H. Lang, 1986: Simulation of snowmelt runoff in lowland and lower alpine regions of Switzerland. Modelling Snowmelt-Induced Processes IAHS Publ, No. 155, 125–140.
Chevallier, P., Y. Caballero, R. Gallaire, and R. Pillco, 2004: Flow modelling in a high mountain valley equipped with hydropower plants: Rio zongo valley, Cordillera Real, Bolivia. Hydrological Processes, 18(5), 939–957, doi: 10.1002/hyp.1339.
Collins, W. D., P. J. Rasch, B. A. Boville, J. J. Hack, J. R. McCaa, D. L. Williamson, J. T. Kiehl, and B. Briegleb, 2004: Description of the NCAR community atmosphere model (CAM3). Tech. Rep. NCAR/TN-464+STR, 226pp.
Collins, W. D., and Coauthors, 2006: The community climate system model version 3 (CCSM3). J. Climate, 19(11), 2122–2143.
Dai, A., 2008: Temperature and pressure dependence of the rain-snow phase transition over land and ocean. Geophys. Res. Lett., 35(12), doi: 10.1029/2008GL033295.
Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model. NCAR Tech. Note NCAR/TN-387 STR 77-77, 80pp.
Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two dimensional model. J. Atmos. Sci., 46(20), 3077–3107.
Essery, R., and P. Etchevers, 2004: Parameter sensitivity in simulations of snowmelt. J. Geophys. Res., 109(D20), doi: 10.1029/2004JD005036.
Essery, R., E. Martin, H. Douville, A. Fernandez, and E. Brun, 1999: A comparison of four snow models using observations from an alpine site. Climate Dyn., 15(8), 583–593.
Fassnacht, S. R., and E. D. Soulis, 2002: Implications during transitional periods of improvements to the snow processes in the land surface scheme-Hydrological model WATCLASS. Atmos.-Ocean, 40(4), 389–403.
Feiccabrino, J., and A. Lundberg, 2008: Precipitation phase discrimination in Sweden. Proc.of the 65th Eastern Snow Conference, Fairlee, Vermont, USA.
Fernández, A., 1998: An energy balance model of seasonal snow evolution. Physics and Chemistry of the Earth, 23(5–6), 661–666, doi: 10.1016/S0079-1946(98)00107-4.
Gillies, R. R., S. Y. Wang, and W. R. Huang, 2012: Observational and supportive modelling analyses of winter precipitation change in China over the last half century. Int. J. Climatol., 32(5), 747–758, doi: 10.1002/Joc.2303.
Jin, J. M., and L. J. Wen, 2012: Evaluation of snowmelt simulation in the weather research and forecasting model. J. Geophys. Res., 117, doi: 10.1029/2011jd016980.
Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 43(1), 170–181.
Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEPDOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83(11), 1631–1643, doi: 10.1175/Bams-83-11-1631.
Kienzle, S. W., 2008: A new temperature based method to separate rain and snow. Hydrological Processes, 22(26), 5067–5085.
Koren, V., J. Schaake, K. Mitchell, Q. Y. Duan, F. Chen, and J. M. Baker, 1999: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res., 104(D16), 19569–19585.
L’Hote, Y., P. Chevallier, A. Coudrain, Y. Lejeune, and P. Etchevers, 2005: Relationship between precipitation phase and air temperature: comparison between the Bolivian Andes and the Swiss Alps. Hydrological Sciences Journal, 50(6), 989–997.
Loth, B., H. F. Graf, and J. M. Oberhuber, 1993: Snow cover model for global climate simulations. J. Geophys. Res., 98(D6), 10451–10464.
Lundquist, J. D., P. J. Neiman, B. Martner, A. B. White, D. J. Gottas, and F. M. Ralph, 2008: Rain versus snow in the Sierra Nevada, California: Comparing doppler profiling radar and surface observations of melting level. Journal of Hydrometeorology, 9(2), 194–211.
Marks, D. G., and A. H. Winstral, 2007: Finding the rain/snow transition elevation during storm events in mountain basins. Abstract in Joint Symposium JHW001: Interactions between snow, vegetation, and the atmosphere, the 24th General Assembly of the IUGG, Perugia, Italy, July 2–13.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102(D14), 16663–16682.
Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62(6), 1665–1677.
Motoyama, H., 1990: Simulation of seasonal snowcover based on air-temperature and precipitation. J. Appl. Meteor., 29(11), 1104–1110.
Noh, Y., W. G. Cheon, S. Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107(2), 401–427.
Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113, G01021, doi: 01010.01029/02007JG000563.
Pipes, A., and M. C. Quick, 1977: UBC watershed model users guide. Department of civil engineering, University of British Columbia: Vancouver, British Columbia, Canada.
Rohrer, M., 1989: Determination of the transition air temperature from snow to rain and intensity of precipitation. Presented at Workshop on Precipitation Measurement, St. Moritz, Switzerland, 475–482.
Schlosser, C. A., A. Robock, K. Y. Vinnikov, N. A. Speranskaya and Y. K. Xue, 1997: 18-year land-surface hydrology model simulations for a midlatitude grassland catchment in Valdai, Russia. Mon. Wea. Rev., 125(12), 3279–3296.
Schreider, S. Y., P. H. Whetton, A. J. Jakeman, and A. B. Pittock, 1997: Runoff modelling for snow-affected catchments in the Australian alpine region, eastern Victoria. J. Hydrol., 200(1–4), 1–23, doi: 10.1016/S0022-1694(97)00006-1.
Shewchuk, S. R., 1997: Surface mesonet for BOREAS. J. Geophys. Res., 102(D24), 29077–29082, doi: 10.1029/96jd03875.
Skamarock, W. C., and J. B. Klemp, 2008: A timesplit nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227(7), 3465–3485.
Strasser, U., P. Etchevers, and Y. Lejeune, 2002: Intercomparison of two snow models with different complexity using data from an alpine site. Nordic Hydrology, 33(1), 15–26.
Subin, Z. M., W. J. Riley, J. Jin, D. S. Christianson, M. S. Torn, and L. M. Kueppers, 2011: Ecosystem feedbacks to climate change in California: Development, testing, and analysis using a coupled regional atmosphere and land surface model (WRF3-CLM3.5). Earth Interactions, 15, 1–38., doi: http://dx.doi.org/10.1175/2010EI331.1.
Sun, S. F., and Y. K. Xue, 2001: Implementing a new snow scheme in simplified simple biosphere model. Adv. Atmos. Sci., 18(3), 335–354, doi: 10.1007/BF02919314.
U.S. Army Corps of Engineers, 1956: Summary report of the snow investigation-Snow hydrology, North Pacific Division report, Portland, Oregon, 437pp.
Walsh, J. E., W. H. Jasperson, and B. Ross, 1985: Influences of snow cover and soil-Moisture on monthly air-temperature. Mon. Wea. Rev., 113(5), 756–768.
Yang, Z. L., R. E. Dickinson, A. Robock, and K. Y. Vinnikov, 1997: Validation of the snow submodel of the biosphere-atmosphere transfer scheme with Russian snow cover and meteorological observational data. J. Climate, 10(2), 353–373.
Yeh, T.-C., R. T. Wetherald, and S. Manabe, 1983: A model study of the short-term climate and hydrologic effects of sudden snowcover removal. Mon. Wea. Rev., 111, 1013–1024.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wen, L., Nagabhatla, N., Lü, S. et al. Impact of rain snow threshold temperature on snow depth simulation in land surface and regional atmospheric models. Adv. Atmos. Sci. 30, 1449–1460 (2013). https://doi.org/10.1007/s00376-012-2192-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00376-012-2192-7