Advances in Atmospheric Sciences

, Volume 30, Issue 5, pp 1449–1460

Impact of rain snow threshold temperature on snow depth simulation in land surface and regional atmospheric models

  • Lijuan Wen (文莉娟)
  • Nidhi Nagabhatla
  • Shihua Lü (吕世华)
  • Shih-Yu Wang
Article

Abstract

This study investigates the impact of rain snow threshold (RST) temperatures on snow depth simulation using the Community Land Model (CLM) and the Weather Research and Forecasting model (WRF—coupled with the CLM and hereafter referred to as WRF_CLM), and the difference in impacts. Simulations were performed from 17 December 1994 to 30 May 1995 in the French Alps. Results showed that both the CLM and the WRF_CLM were able to represent a fair simulation of snow depth with actual terrain height and 2.5°C RST temperature. When six RST methods were applied to the simulation using WRF_CLM, the simulated snow depth was the closest to observations using 2.5°C RST temperature, followed by that with Pipes’, USACE, Kienzle’s, Dai’s, and 0°C RST temperature methods. In the case of using CLM, simulated snow depth was the closest to the observation with Dai’s method, followed by with USACE, Pipes’, 2.5°C RST temperature, Kienzle’s, and 0°C RST temperature method. The snow depth simulation using the WRF_CLM was comparatively sensitive to changes in RST temperatures, because the RST temperature was not only the factor to partition snow and rainfall. In addition, the simulated snow related to RST temperature could induce a significant feedback by influencing the meteorological variables forcing the land surface model in WRF_CLM. In comparison, the above variables did not change with changes in RST in CLM. Impacts of RST temperatures on snow depth simulation could also be influenced by the patterns of temperature and precipitation, spatial resolution, and input terrain heights.

Key words

snow simulation RST temperature WRF_CLM CLM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auer, A. H., 1974: The rain versus snow threshold temperatures. Weatherwise, 27(2), 67–67, doi: 10.1080/00431672.1974.9931684.CrossRefGoogle Scholar
  2. Barnett, T. P., L. Dumenil, U. Schlese, E. Roeckner, and M. Latif, 1989: The effect of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci., 46(5), 661–685.CrossRefGoogle Scholar
  3. Belair, S., R. Brown, J. Mailhot, B. Bilodeau, and L. P. Crevier, 2003: Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part II: Cold season results. Journal of Hydrometeorology, 4(2), 371–386.CrossRefGoogle Scholar
  4. Boone, A., and P. Etchevers, 2001: An intercomparison of three snow schemes of varying complexity coupled to the same land surface model: Local-scale evaluation at an Alpine site. Journal of Hydrometeorology, 2(4), 374–394.CrossRefGoogle Scholar
  5. Braun, L. N., and H. Lang, 1986: Simulation of snowmelt runoff in lowland and lower alpine regions of Switzerland. Modelling Snowmelt-Induced Processes IAHS Publ, No. 155, 125–140.Google Scholar
  6. Chevallier, P., Y. Caballero, R. Gallaire, and R. Pillco, 2004: Flow modelling in a high mountain valley equipped with hydropower plants: Rio zongo valley, Cordillera Real, Bolivia. Hydrological Processes, 18(5), 939–957, doi: 10.1002/hyp.1339.CrossRefGoogle Scholar
  7. Collins, W. D., P. J. Rasch, B. A. Boville, J. J. Hack, J. R. McCaa, D. L. Williamson, J. T. Kiehl, and B. Briegleb, 2004: Description of the NCAR community atmosphere model (CAM3). Tech. Rep. NCAR/TN-464+STR, 226pp.Google Scholar
  8. Collins, W. D., and Coauthors, 2006: The community climate system model version 3 (CCSM3). J. Climate, 19(11), 2122–2143.CrossRefGoogle Scholar
  9. Dai, A., 2008: Temperature and pressure dependence of the rain-snow phase transition over land and ocean. Geophys. Res. Lett., 35(12), doi: 10.1029/2008GL033295.Google Scholar
  10. Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model. NCAR Tech. Note NCAR/TN-387 STR 77-77, 80pp.Google Scholar
  11. Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two dimensional model. J. Atmos. Sci., 46(20), 3077–3107.CrossRefGoogle Scholar
  12. Essery, R., and P. Etchevers, 2004: Parameter sensitivity in simulations of snowmelt. J. Geophys. Res., 109(D20), doi: 10.1029/2004JD005036.Google Scholar
  13. Essery, R., E. Martin, H. Douville, A. Fernandez, and E. Brun, 1999: A comparison of four snow models using observations from an alpine site. Climate Dyn., 15(8), 583–593.CrossRefGoogle Scholar
  14. Fassnacht, S. R., and E. D. Soulis, 2002: Implications during transitional periods of improvements to the snow processes in the land surface scheme-Hydrological model WATCLASS. Atmos.-Ocean, 40(4), 389–403.CrossRefGoogle Scholar
  15. Feiccabrino, J., and A. Lundberg, 2008: Precipitation phase discrimination in Sweden. Proc.of the 65th Eastern Snow Conference, Fairlee, Vermont, USA.Google Scholar
  16. Fernández, A., 1998: An energy balance model of seasonal snow evolution. Physics and Chemistry of the Earth, 23(5–6), 661–666, doi: 10.1016/S0079-1946(98)00107-4.CrossRefGoogle Scholar
  17. Gillies, R. R., S. Y. Wang, and W. R. Huang, 2012: Observational and supportive modelling analyses of winter precipitation change in China over the last half century. Int. J. Climatol., 32(5), 747–758, doi: 10.1002/Joc.2303.CrossRefGoogle Scholar
  18. Jin, J. M., and L. J. Wen, 2012: Evaluation of snowmelt simulation in the weather research and forecasting model. J. Geophys. Res., 117, doi: 10.1029/2011jd016980.Google Scholar
  19. Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 43(1), 170–181.CrossRefGoogle Scholar
  20. Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEPDOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83(11), 1631–1643, doi: 10.1175/Bams-83-11-1631.CrossRefGoogle Scholar
  21. Kienzle, S. W., 2008: A new temperature based method to separate rain and snow. Hydrological Processes, 22(26), 5067–5085.CrossRefGoogle Scholar
  22. Koren, V., J. Schaake, K. Mitchell, Q. Y. Duan, F. Chen, and J. M. Baker, 1999: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res., 104(D16), 19569–19585.CrossRefGoogle Scholar
  23. L’Hote, Y., P. Chevallier, A. Coudrain, Y. Lejeune, and P. Etchevers, 2005: Relationship between precipitation phase and air temperature: comparison between the Bolivian Andes and the Swiss Alps. Hydrological Sciences Journal, 50(6), 989–997.Google Scholar
  24. Loth, B., H. F. Graf, and J. M. Oberhuber, 1993: Snow cover model for global climate simulations. J. Geophys. Res., 98(D6), 10451–10464.CrossRefGoogle Scholar
  25. Lundquist, J. D., P. J. Neiman, B. Martner, A. B. White, D. J. Gottas, and F. M. Ralph, 2008: Rain versus snow in the Sierra Nevada, California: Comparing doppler profiling radar and surface observations of melting level. Journal of Hydrometeorology, 9(2), 194–211.CrossRefGoogle Scholar
  26. Marks, D. G., and A. H. Winstral, 2007: Finding the rain/snow transition elevation during storm events in mountain basins. Abstract in Joint Symposium JHW001: Interactions between snow, vegetation, and the atmosphere, the 24th General Assembly of the IUGG, Perugia, Italy, July 2–13.Google Scholar
  27. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102(D14), 16663–16682.CrossRefGoogle Scholar
  28. Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62(6), 1665–1677.CrossRefGoogle Scholar
  29. Motoyama, H., 1990: Simulation of seasonal snowcover based on air-temperature and precipitation. J. Appl. Meteor., 29(11), 1104–1110.CrossRefGoogle Scholar
  30. Noh, Y., W. G. Cheon, S. Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107(2), 401–427.CrossRefGoogle Scholar
  31. Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113, G01021, doi: 01010.01029/02007JG000563.CrossRefGoogle Scholar
  32. Pipes, A., and M. C. Quick, 1977: UBC watershed model users guide. Department of civil engineering, University of British Columbia: Vancouver, British Columbia, Canada.Google Scholar
  33. Rohrer, M., 1989: Determination of the transition air temperature from snow to rain and intensity of precipitation. Presented at Workshop on Precipitation Measurement, St. Moritz, Switzerland, 475–482.Google Scholar
  34. Schlosser, C. A., A. Robock, K. Y. Vinnikov, N. A. Speranskaya and Y. K. Xue, 1997: 18-year land-surface hydrology model simulations for a midlatitude grassland catchment in Valdai, Russia. Mon. Wea. Rev., 125(12), 3279–3296.CrossRefGoogle Scholar
  35. Schreider, S. Y., P. H. Whetton, A. J. Jakeman, and A. B. Pittock, 1997: Runoff modelling for snow-affected catchments in the Australian alpine region, eastern Victoria. J. Hydrol., 200(1–4), 1–23, doi: 10.1016/S0022-1694(97)00006-1.CrossRefGoogle Scholar
  36. Shewchuk, S. R., 1997: Surface mesonet for BOREAS. J. Geophys. Res., 102(D24), 29077–29082, doi: 10.1029/96jd03875.CrossRefGoogle Scholar
  37. Skamarock, W. C., and J. B. Klemp, 2008: A timesplit nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227(7), 3465–3485.CrossRefGoogle Scholar
  38. Strasser, U., P. Etchevers, and Y. Lejeune, 2002: Intercomparison of two snow models with different complexity using data from an alpine site. Nordic Hydrology, 33(1), 15–26.Google Scholar
  39. Subin, Z. M., W. J. Riley, J. Jin, D. S. Christianson, M. S. Torn, and L. M. Kueppers, 2011: Ecosystem feedbacks to climate change in California: Development, testing, and analysis using a coupled regional atmosphere and land surface model (WRF3-CLM3.5). Earth Interactions, 15, 1–38., doi: http://dx.doi.org/10.1175/2010EI331.1.CrossRefGoogle Scholar
  40. Sun, S. F., and Y. K. Xue, 2001: Implementing a new snow scheme in simplified simple biosphere model. Adv. Atmos. Sci., 18(3), 335–354, doi: 10.1007/BF02919314.CrossRefGoogle Scholar
  41. U.S. Army Corps of Engineers, 1956: Summary report of the snow investigation-Snow hydrology, North Pacific Division report, Portland, Oregon, 437pp.Google Scholar
  42. Walsh, J. E., W. H. Jasperson, and B. Ross, 1985: Influences of snow cover and soil-Moisture on monthly air-temperature. Mon. Wea. Rev., 113(5), 756–768.CrossRefGoogle Scholar
  43. Yang, Z. L., R. E. Dickinson, A. Robock, and K. Y. Vinnikov, 1997: Validation of the snow submodel of the biosphere-atmosphere transfer scheme with Russian snow cover and meteorological observational data. J. Climate, 10(2), 353–373.CrossRefGoogle Scholar
  44. Yeh, T.-C., R. T. Wetherald, and S. Manabe, 1983: A model study of the short-term climate and hydrologic effects of sudden snowcover removal. Mon. Wea. Rev., 111, 1013–1024.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lijuan Wen (文莉娟)
    • 1
    • 2
  • Nidhi Nagabhatla
    • 3
  • Shihua Lü (吕世华)
    • 1
  • Shih-Yu Wang
    • 4
  1. 1.Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouChina
  2. 2.Laboratory of Arid Climatic Changing and Reducing Disaster of Gansu Province, Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouChina
  3. 3.Institut für UmweltplanungGottfried Wilhelm Leibniz UniversitätHannoverGermany
  4. 4.Department of Plants, Soils, and ClimateUtah State UniversityLoganUSA

Personalised recommendations