Advertisement

Advances in Atmospheric Sciences

, Volume 30, Issue 5, pp 1421–1432 | Cite as

Impacts of snow cover on vegetation phenology in the arctic from satellite data

  • Heqing Zeng (曾贺情)
  • Gensuo Jia (贾根锁)
Article

Abstract

The dynamics of snow cover is considered an essential factor in phenological changes in Arctic tundra and other northern biomes. The Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra satellite data were selected to monitor the spatial and temporal heterogeneity of vegetation phenology and the timing of snow cover in western Arctic Russia (the Yamal Peninsula) during the period 2000–10. The magnitude of changes in vegetation phenology and the timing of snow cover were highly heterogeneous across latitudinal gradients and vegetation types in western Arctic Russia. There were identical latitudinal gradients for “start of season” (SOS) (r 2 = 0.982, p < 0.0001), “end of season” (EOS) (r 2 = 0.938, p < 0.0001), and “last day of snow cover” (LSC) (r 2 = 0.984, p < 0.0001), while slightly weaker relationships between latitudinal gradients and “first day of snow cover” (FSC) were observed (r 2 = 0.48, p < 0.0042). Delayed SOS and FSC, and advanced EOS and LSC were found in the south of the region, while there were completely different shifts in the north. SOS for the various land cover features responded to snow cover differently, while EOS among different vegetation types responded to snowfall almost the same. The timing of snow cover is likely a key driving factor behind the dynamics of vegetation phenology over the Arctic tundra. The present study suggests that snow cover urgently needs more attention to advance understanding of vegetation phenology in the future.

Key words

phenology snow tundra vegetation satellite Arctic Russia seasonality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, V. K., and G. J. Boer, 2001: Effects of simulated climate change on the hydrology of major river basins. J. Geophys. Res., 106, 3335–3348.CrossRefGoogle Scholar
  2. Ávila-Jiménez, M., and S. Coulson, 2011: Can snow depth be used to predict the distribution of the high Arctic aphid Acyrthosiphon svalbardicum (Hemiptera: Aphididae) on Spitsbergen? BMC Ecology, 11, 1–13.CrossRefGoogle Scholar
  3. Baringer, M. O., D. S. Arndt, and M. R. Johnson, 2010: State of the climate in 2009. Bull. Amer. Meteor. Soc., 91, 1–222.CrossRefGoogle Scholar
  4. Betts, A. K., and J. H. Ball, 1997: Albedo over the boreal forest. J. Geophys. Res., 102, 28901–28909.CrossRefGoogle Scholar
  5. Brown, R. D., 2000: Northern hemisphere snow cover variability and change, 1915–97. J. Climate, 13, 2339–2355.CrossRefGoogle Scholar
  6. Brown, R. D., and D. A. Robinson, 2011: Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. Cryosphere, 5, 219–229.CrossRefGoogle Scholar
  7. Brown, R. D., B. Brasnett, and D. Robinson, 2003: Gridded North American monthly snow depth and snow water equivalent for GCM evaluation. Atmos.-Ocean, 41, 1–14.CrossRefGoogle Scholar
  8. Brown, R., C. Derksen, and L. Wang, 2010: A multi-data set analysis of variability and change in Arctic spring snow cover extent, 1967–2008. J. Geophys. Res., 115, doi: 10.1029/2010JD013975.Google Scholar
  9. Buermann, W., B. R. Lintner, C. D. Koven, A. Angert, J. E. Pinzon, C. J. Tucker, and I. Y. Fung, 2007: The changing carbon cycle at Mauna Loa observatory. Proc. the National Academy of Sciences of the United States of America, 104, 4249–4254.CrossRefGoogle Scholar
  10. Cane, M. A., 2010: Climate science decadal predictions in demand. Nature Geoscience, 3, 231–232.CrossRefGoogle Scholar
  11. CAVM Team, 2003: Circumpolar Arctic vegetation map (Scale 1:7500000). Conservation of Arctic Flora and Fauna (CAFF) Map No. 1, U.S. Fish and Wildlife Service, Anchorage, AK, US.Google Scholar
  12. Chapin, F. S., and Coauthors, 2005: Role of land-surface changes in Arctic summer warming. Science, 310, 657–660.CrossRefGoogle Scholar
  13. Chmielewski, F. M., and T. Rotzer, 2001: Response of tree phenology to climate change across Europe. Agricultural and Forest Meteorology, 108, 101–112.CrossRefGoogle Scholar
  14. Cleland, E. E., I. Chuine, A. Menzel, H. A. Mooney, and M. D. Schwartz, 2007: Shifting plant phenology in response to global change. Trends in Ecology and Evolution, 22, 357–365.CrossRefGoogle Scholar
  15. de Beurs, K. M., and G. M. Henebry, 2008: Northern annular mode effects on the land surface phenologies of northern Eurasia. J. Climate, 21, 4257–4279.CrossRefGoogle Scholar
  16. de Beurs, K. M., and G. M. Henebry, 2010: A land surface phenology assessment of the northern polar regions using MODIS reflectance time series. Canadian Journal of Remote Sensing, 36, S87–S110.CrossRefGoogle Scholar
  17. Dye, D. G., 2002: Variability and trends in the annual snow-cover cycle in Northern Hemisphere land areas, 1972–2000. Hydrological Processes, 16, 3065–3077.CrossRefGoogle Scholar
  18. Easterling, D. R., T. R. Karl, K. P. Gallo, D. A. Robinson, K. E. Trenberth, and A. Dai, 2000: Observed climate variability and change of relevance to the biosphere. J. Geophys. Res., 105, 20101–20114.CrossRefGoogle Scholar
  19. Eugster, W., and Coauthors, 2000: Land-atmosphere energy exchange in Arctic tundra and boreal forest: available data and feedbacks to climate. Global change biology 6, 84–115.CrossRefGoogle Scholar
  20. Flanner, M. G., K. M. Shell, M. Barlage, D. K. Perovich, and M. A. Tschudi, 2011: Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008. Nature Geoscience, 4, 151–155.CrossRefGoogle Scholar
  21. Forbes, B. C., F. Stammler, T. Kumpula, N. Meschtyb, A. Pajunen, and E. Kaarlejarvi, 2009: High resilience in the Yamal-Nenets social-ecological system, West Siberian Arctic, Russia. Proc. the National Academy of Sciences of the United States of America, 106, 22041–22048.CrossRefGoogle Scholar
  22. Forbes, B. C., M. Macias Fauria, and P. Zetterberg, 2010: Russian Arctic warming and “greening” are closely tracked by tundra shrub willows. Global Change Biology, 16, 1542–1554.CrossRefGoogle Scholar
  23. Gafurov, A., and A. Bardossy, 2009: Cloud removal methodology from MODIS snow cover product. Hydrology and Earth System Sciences, 13, 1361–1373.CrossRefGoogle Scholar
  24. Gerland, S., G. E. Liston, J. G. Winther, J. B. Orbaek, and B. V. Ivanov, 2000: Attenuation of solar radiation in Arctic snow: Field observations and modelling. Annals of Glaciology, 31(1), 364–368.CrossRefGoogle Scholar
  25. Goetz, S. J., and Coauthors, 2011: Recent Changes in Arctic Vegetation: Satellite Observations and Simulation Model Predictions. Eurasian Arctic Land Cover and Land Use in a Changing Climate, G. Gutman and A. Reissell, Eds., Springer Netherlands, 9–36.Google Scholar
  26. Gordo, O., and J. Jose Sanz, 2009: Long-term temporal changes of plant phenology in the Western Mediterranean. Global Change Biology, 15, 1930–1948.CrossRefGoogle Scholar
  27. Groisman, P. Y., T. R. Karl, and R. W. Knight, 1994a: Observed impact of snow cover on the heat balance and the rise of continental spring temperatures. Science, 263, 198–200.CrossRefGoogle Scholar
  28. Groisman, P. Y., T. R. Karl, R. W. Knight, and G. L. Stenchikov, 1994b: Changes of snow cover, temperature, and radiative heat-balance over the Northern-Hemisphere. J. Climate, 7, 1633–1656.CrossRefGoogle Scholar
  29. Hall, A., and X. Qu, 2006: Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys. Res. Lett., 33, doi:10.1029/2005GL025127.Google Scholar
  30. Hall, D. K., and G. A. Riggs, 2007: Accuracy assessment of theMODIS snow products. Hydrological Processes, 21, 1534–1547.CrossRefGoogle Scholar
  31. Hall, D. K., G. A. Riggs, V. V. Salomonson, N. E. Di-Girolamo, and K. J. Bayr, 2002: MODIS snow-cover products. Remote Sens. Environ., 83, 181–194.CrossRefGoogle Scholar
  32. Ho, C. H., E. J. Lee, I. Lee, and S. J. Jeong, 2006: Earlier spring in Seoul, Korea. Int. J. Climatol., 26, 2117–2127.CrossRefGoogle Scholar
  33. Huang, X., T. Liang, X. Zhang, and Z. Guo, 2011: Validation of MODIS snow cover products using Landsat and ground measurements during the 2001–2005 snow seasons over northern Xinjiang, China. Int. J. Remote Sens., 32, 133–152.CrossRefGoogle Scholar
  34. IPCC, 2007: Climate Change 2007. The Physical Science Basis. Cambridge University Press, Cambridge, 996pp.Google Scholar
  35. Jeong, S. J., C. H. Ho, H. J. Gim, and M. E. Brown, 2011: Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Global Change Biology, 17, 2385–2399.CrossRefGoogle Scholar
  36. Jeong, S.-J., D. Medvigy, E. Shevliakova, and S. Malyshev, 2012: Uncertainties in terrestrial carbon budgets related to spring phenology. J. Geophys. Res., 117, doi: 10.1029/2011JG001868.Google Scholar
  37. Jeong, S. J., C. H. Ho, B. M. Kim, S. Feng, and D. Medvigy, 2013: Non-linear response of vegetation to coherent warming over northern high latitudes. Remote Sensing Letters, 4, 123–130.CrossRefGoogle Scholar
  38. Jia, G. J., H. E. Epstein, and D. A. Walker, 2006: Spatial heterogeneity of tundra vegetation response to recent temperature changes. Global Change Biology, 12, 42–55.CrossRefGoogle Scholar
  39. Jia, G. J., H. E. Epstein, and D. A. Walker, 2009: Vegetation greening in the canadian arctic related to decadal warming. Journal of Environmental Monitoring, 11, 2231–2238.CrossRefGoogle Scholar
  40. Jonas, T., C. Rixen, M. Sturm, and V. Stoeckli, 2008: How alpine plant growth is linked to snow cover and climate variability. J. Geophys. Res., 113, doi: 10.1029/2007JG000680.Google Scholar
  41. Jonsson, A. M., L. Eklundh, M. Hellstrom, L. Barring, and P. Jonsson, 2010: Annual changes in MODIS vegetation indices of Swedish coniferous forests in relation to snow dynamics and tree phenology. Remote Sens. Environ., 114, 2719–2730.CrossRefGoogle Scholar
  42. Karl, T. R., P. Y. Groisman, R. W. Knight, and R. R. Heim, 1993: Recent variations of snow cover and snowfall in North America and their relation to precipitation and temperature variations. J. Climate, 6, 1327–1344.CrossRefGoogle Scholar
  43. Kreyling, J., 2010: Winter climate change: A critical factor for temperate vegetation performance. Ecology, 91, 1939–1948.CrossRefGoogle Scholar
  44. Litaor, M. I., M. Williams, and T. R. Seastedt, 2008: Topographic controls on snow distribution, soil moisture, and species diversity of herbaceous alpine vegetation, Niwot Ridge, Colorado. J. Geophys. Res., 113, doi: 10.1029/2007JG000419Google Scholar
  45. Manabe, S., and R. T. Wetherald, 1987: Large-scale changes of soil wetness induced by an increase in atmospheric carbon-dioxide. J. Atmos. Sci., 44, 1211–1235.CrossRefGoogle Scholar
  46. Menzel, A., 2003: Plant phenological anomalies in Germany and their relation to air temperature and NAO. Climatic Change, 57, 243–263.CrossRefGoogle Scholar
  47. Menzel, A., and P. Fabian, 1999: Growing season extended in Europe. Nature, 397, 659–659.CrossRefGoogle Scholar
  48. Menzel, A., and Coauthors, 2006: European phenological response to climate change matches the warming pattern. Global change biology, 12, 1969–1976.CrossRefGoogle Scholar
  49. Myneni, R. B., C. D. Keeling, C. J. Tucker, G. Asrar, and R. R. Nemani, 1997: Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386, 698–702.CrossRefGoogle Scholar
  50. Nagler, T., H. Rott, P. Malcher, and F. Mueller, 2008: Assimilation of meteorological and remote sensing data for snowmelt runoff forecasting. Remote Sens. Environ., 112, 1408–1420.CrossRefGoogle Scholar
  51. Oberbauer, S. F., G. Starr, and E. W. Pop, 1998: Effects of extended growing season and soil warming on carbon dioxide and methane exchange of tussock tundra in Alaska. J. Geophys. Res., 103, 29075–29082.CrossRefGoogle Scholar
  52. Peterson, D. W., and D. L. Peterson, 2001: Mountain hemlock growth responds to climatic variability at annual and decadal time scales. Ecology, 82, 3330–3345.CrossRefGoogle Scholar
  53. Piao, S. L., J. Y. Fang, L. M. Zhou, P. Ciais, and B. Zhu, 2006: Variations in satellite-derived phenology in China’s temperate vegetation. Glob. Change Biol., 12, 672–685.CrossRefGoogle Scholar
  54. Piao, S., M. Cui, A. Chen, X. Wang, P. Ciais, J. Liu, and Y. Tang, 2011: Altitude and temperature dependence of change in the spring vegetation greenup date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agricultural and Forest Meteorology, 151, 1599–1608.CrossRefGoogle Scholar
  55. Pielke, R. A., G. E. Liston, and A. Robock, 2000: Insolation-weighted assessment of Northern Hemisphere snow-cover and sea-ice variability. Geophys. Res. Lett., 27, 3061–3064.CrossRefGoogle Scholar
  56. Raisanen, J., 2008: Warmer climate: Less or more snow? Climate Dyn., 30, 307–319.CrossRefGoogle Scholar
  57. Reed, B., M. Budde, P. Spencer, and A. E. Miller, 2009: Integration ofMODIS-derived metrics to assess interannual variability in snowpack, lake ice, and NDVI in southwest Alaska. Remote Sens. Environ., 113, 1443–1452.CrossRefGoogle Scholar
  58. Running, S. W., J. B. Way, K. C. McDonald, J. S. Kimball, S. Frolking, A. R. Keyser, and R. Zimmerman, 1999: Radar remote sensing proposed for monitoring freeze-thaw transitions in boreal regions. Eos Trans. Amer. Geophys. Union, 80, 213–221.CrossRefGoogle Scholar
  59. Saunders, M. A., B. D. Qian, and B. Lloyd-Hughes, 2003: Summer snow extent heralding of the winter North Atlantic oscillation. Geophys. Res. Lett., 30, doi: 10.1029/2002GL016832Google Scholar
  60. Serreze, M. C., D. H. Bromwich, M. P. Clark, A. J. Etringer, T. J. Zhang, and R. Lammers, 2002: Large-scale hydro-climatology of the terrestrial Arctic drainage system. J. Geophys. Res., 108, doi: 10.1029/2001JD000919.Google Scholar
  61. Smith, N. V., S. S. Saatchi, and J. T. Randerson, 2004: Trends in high northern latitude soil freeze and thaw cycles from 1988 to 2002. J. Geophys. Res., 109, doi: 10.1029/2003JD004472.Google Scholar
  62. Stewart, K.M., R.T. Bowyer, B.L. Dick, B. K. Johnson, and J. G. Kie, 2005: Density-dependent effects on physical condition and reproduction in North American elk: An experimental test. Oecologia, 143, 85–93.CrossRefGoogle Scholar
  63. Sturm, M., C. Racine, and K. Tape, 2001: Climate change-Increasing shrub abundance in the Arctic. Nature, 411, 546–547.CrossRefGoogle Scholar
  64. Sturm, M., T. Douglas, C. Racine, and G. E. Liston, 2005: Changing snow and shrub conditions affect albedo with global implications. J. Geophys. Res, 110, doi: 10.1029/2005JG000013.Google Scholar
  65. Tucker, C. J., 1979: Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ., 8, 127–150.CrossRefGoogle Scholar
  66. Walker, D. A., and Coauthors, 2005: The circumpolar Arctic vegetation map. Journal of Vegetation Science, 16, 267–282.CrossRefGoogle Scholar
  67. Walker, D. A., and Coauthors, 2009: Spatial and temporal patterns of greenness on the Yamal Peninsula, Russia: Interactions of ecological and social factors affecting the Arctic normalized difference vegetation index. Environmental Research Letters, 4, doi: 10.1088/1748-9326/4/4/045004.Google Scholar
  68. Wang, X., H. Xie, and T. Liang, 2008: Evaluation of MODIS snow cover and cloud mask and its application in northern Xinjiang, China. Remote Sens. Environ., 112, 1497–1513.CrossRefGoogle Scholar
  69. White, M. A., and Coauthors, 2009: Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Global Change Biology, 15, 2335–2359.CrossRefGoogle Scholar
  70. Wipf, S., and C. Rixen, 2010: A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Research, 29, 95–109.CrossRefGoogle Scholar
  71. Yang, D. Q., D. Robinson, Y. Y. Zhao, T. Estilow, and B. S. Ye, 2003: Streamflow response to seasonal snow cover extent changes in large Siberian watersheds. J. Geophys. Res., 108, 1–14.Google Scholar
  72. Ye, H. C., 2001: Increases in snow season length due to earlier first snow and later last snow dates over North Central and Northwest Asia during 1937–94. Geophys. Res. Lett., 28, 551–554.CrossRefGoogle Scholar
  73. Zeng, H., G. Jia, and H. Epstein, 2011: Recent changes in phenology over the northern high latitudes detected from multi-satellite data. Environmental Research Letters, 6, doi: 10.1088/1748-9326/6/4/045508.Google Scholar
  74. Zhang, T. J., 2005: Influence of the seasonal snow cover on the ground thermal regime: An overview. Rev. Geophys., 43, doi: 10.1029/2004RG000157.Google Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Heqing Zeng (曾贺情)
    • 1
    • 2
  • Gensuo Jia (贾根锁)
    • 1
  1. 1.Key Laboratory of Regional Climate-Environmental for East Asia, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations