Advances in Atmospheric Sciences

, Volume 30, Issue 4, pp 1096–1105 | Cite as

Handling error propagation in sequential data assimilation using an evolutionary strategy

  • Yulong Bai (摆玉龙)
  • Xin Li (李 新)
  • Chunlin Huang (黄春林)
Article
  • 101 Downloads

Abstract

An evolutionary strategy-based error parameterization method that searches for the most ideal error adjustment factors was developed to obtain better assimilation results. Numerical experiments were designed using some classical nonlinear models (i.e., the Lorenz-63 model and the Lorenz-96 model). Crossover and mutation error adjustment factors of evolutionary strategy were investigated in four aspects: the initial conditions of the Lorenz model, ensemble sizes, observation covariance, and the observation intervals. The search for error adjustment factors is usually performed using trial-and-error methods. To solve this difficult problem, a new data assimilation system coupled with genetic algorithms was developed. The method was tested in some simplified model frameworks, and the results are encouraging. The evolutionary strategy-based error handling methods performed robustly under both perfect and imperfect model scenarios in the Lorenz-96 model. However, the application of the methodology to more complex atmospheric or land surface models remains to be tested.

Key words

data assimilation error propagation evolutionary strategies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J. L., 2007: Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter. Physica D, 230, 99–111.CrossRefGoogle Scholar
  2. Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the non-linear filtering problem to produce ensemble assimilation and forecasts. Mon. Wea. Rev., 127, 2741–2758.CrossRefGoogle Scholar
  3. Back, T., U. Hammel, and H.-P. Schwefel. 1997: Evolutionary computation: Comments on the history and current state. IEEE Transactions On Evolutionary Computation, 1(1), 3–17.CrossRefGoogle Scholar
  4. Bai, Y. L, and X. Li, 2011: Evolutionary Algorithm-Based Error Parametrization Methods for Data Assimilation. Mon. Wea. Rev., 139, 2668–2685.CrossRefGoogle Scholar
  5. Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420–436.CrossRefGoogle Scholar
  6. Dee, D. P. 1995: On-line estimation of error covariance parameters for atmospheric data assimilation. Mon. Wea. Rev., 123, 1128–1145.CrossRefGoogle Scholar
  7. Dee, D. P., and A. M. da Silva, 1999: Maximumlikelihood estimation of forecast and observation error covariance parameters. Part I: Metholodgy. Mon. Wea. Rev., 127, 1822–1834.CrossRefGoogle Scholar
  8. Evensen, G., 2007: Data Assimilation: The Ensemble Kalman Filter. Springer-Verlag, Berlin, 279pp.Google Scholar
  9. Fogel, D. B., 2006: Evolutionary Computation: Toward a New Philosophy of Machine Intelligence (The third edition) John, Whily & Sons, New Jersey, 273pp.Google Scholar
  10. Greybush, S. J., E. Kalnay, T. Miyoshi, K. Ide, and B. R. Hunt, 2011: Balance and ensemble Kalman filter localization techniques. Mon. Wea. Rev., 139, 511–522.CrossRefGoogle Scholar
  11. Hamill, T. M., J. S. Whitaker, and C. Snyder, 2005: Accounting for the error due to unresolved scales in ensemble data assimilation: A comparison of different approaches. Mon. Wea. Rev., 133, 3132–3147.CrossRefGoogle Scholar
  12. Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon.Wea. Rev., 129, 123–137.CrossRefGoogle Scholar
  13. Jazwinski, A. H., 1970: Stochastic Processes and Filtering Theory. Academic Press, 376pp.Google Scholar
  14. Kalnay, E., H. Li., T. Miyoshi., S.-C Yang, and J. Ballabrera Poy, 2007: 4D-Var or ensemble Kalman Filter? Tellus A, 59, 758–773.CrossRefGoogle Scholar
  15. Khare, S. P., J. L. Anderson, T. J. Hour, and D. Nychka, 2008: An investigation into the application of an ensemble Kalman smoother to high-dimensional geophysical systems. Tellus A, 60, 97–112.CrossRefGoogle Scholar
  16. Lee, Y. H., S. K. Park, and D. E. Chang, 2006: Parameter estimation using the genetic algorithm and its impact on quantitative precipitation forecast. Annales Geophosicae, 24, 3185–3189.CrossRefGoogle Scholar
  17. Li, H., E. Kalnay, T. Miyoshi, and C. M. Danforth, 2009: Accounting for model errors in ensemble data assimilation. Mon. Wea. Rev., 137, 3407–3419.CrossRefGoogle Scholar
  18. Li, X., and Coauthors, 2007: Development of a Chinese land data assimilation system: Its progress and prospects. Progress in Nature Science., 17, 881–892.CrossRefGoogle Scholar
  19. Liang, X., X. G. Zheng, S. P. Zhang, G. C. Wu, Y. J. Dai, and Y. Li, 2011: Maximum likelihood estimation of inflation factors on forecast error covariance matrix for ensemble Kalman filter assimilation. Quart. J. Roy. Meteor. Soc., doi: 10.1002/qj.912.Google Scholar
  20. Lorenz, E. N., 1963: Deterministic nonperiodic flow. J Atmos. Sci., 20, 130–141.CrossRefGoogle Scholar
  21. Lorenz, E. N., 1996: Predictability: A problem partly solved. Proc. Semi-nar on Predictability, Volume 1, reading, United Kingdom, ECMWF, 1-19.Google Scholar
  22. NG, G.-H., D. Mclaughlin, D. Entekhabi, and A. Ahanin. 2011: The role of model dynamic in ensemble Kalman filter performance for chaotic systems. Tellus A, 63, 958–977.CrossRefGoogle Scholar
  23. Rechenberg, I., 1965: Cybernetic solution path of an experimental problem Tech. Rep. Library translation No. 1122, Royal Aircraft Establishment, Farnborough, Hants., UK.Google Scholar
  24. Reichle, R. H., 2008: Data Assimilation methods in the Earth Science. Advances in Water Resources, 31, 1411–1418.CrossRefGoogle Scholar
  25. Schwefel, H.-P., 1981: Numerical optimization of computer models, Wiley, New York, 389pp.Google Scholar
  26. Tian, X., and Z. Xie, 2012: Implementations of a squareroot ensemble analysis and a hybrid localisation into the POD-based ensemble 4dvar. Tellus A, 64, 1–19.CrossRefGoogle Scholar
  27. Tian, X., Z. Xie, and Q. Sun, 2011: A POD-based ensemble four-dimensional variational assimilation method. Tellus A, 63, 805–816.CrossRefGoogle Scholar
  28. Wang, B., J. J. Liu, S. D. Wang, W. Cheng, J. Liu, C. S. Liu, Q. N. Xiao, and Y.-H. Kuo, 2010: An economical approach to four-dimensional variational data assimilation. Adv. Atmos. Sci., 27(4), 715–727, doi: 10.1007/s00376-009-9122-3.CrossRefGoogle Scholar
  29. Whitaker, J. S., T. M. Hamill, X. Wei, Y. Song, and Z. Toth, 2008: Ensemble data assimilation with NCEP global forecast system. Mon. Wea. Rev., 136, 463–482.CrossRefGoogle Scholar
  30. Whitley, D., 2001: An overview of evolutionary algorithms: Practical issues and common pitfalls. Information and Software Technology, 43, 817–831.CrossRefGoogle Scholar
  31. Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convectivescale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 1238–1253.CrossRefGoogle Scholar
  32. Zheng, X. G., 2009: An adaptive estimation of forecast error covariance parameters for Kalman filtering data assimilation. Adv. Atmos. Sci., 26(1), 154–160, doi: 10.1007/s00376-009-0154-5.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yulong Bai (摆玉龙)
    • 1
    • 2
  • Xin Li (李 新)
    • 1
  • Chunlin Huang (黄春林)
    • 1
  1. 1.Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouChina
  2. 2.College of Physics and Electrical EngineeringNorthwest Normal UniversityLanzhouChina

Personalised recommendations