Skip to main content
Log in

Water budgets of tropical cyclones: Three case studies

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

In this study, three tropical cyclones (TCs) that passed through the Taiwan Strait were analyzed; our results show that precipitation is not directly related to the intensity of TCs. From the perspective of water budget, moisture flux convergence was dominant and contributed ∼70% of the moisture for TC precipitation over the ocean and almost all over the land, especially inside the TC circulation. Their spatial distributions were also similar. Evaporation contributed ∼30% of the moisture for precipitation over the ocean but changed little with the time. Moisture flux convergence can be divided into two parts: wind convergence and moisture advection. Moisture flux convergence was mostly due to wind convergence, which was dominant in the southwestern quadrants of the TCs. Moisture advection was located in the northern area, and becomes relatively important when the TCs approached the land. The moisture flux convergence and its two parts varied during TC movement, with strengthening and contraction of moisture convergence present near landfall. The vertical structure of the three TC cases all indicated that the moisture convergence was mainly confined to the lower atmosphere under 800 hPa and a weak divergence region was present in the middle troposphere around 550 hPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anthes, R., 1982: Tropical Cyclones: Their Evolution, Structure and Effects. Meteorological Monographs, Vol. 19, No. 1, Amer. Meteor. Soc., 208pp.

  • Blake, E. S., C. W. Landsea, and E. J. Gibney, 2011: The deadliest, costliest and most intense United States tropical cyclones from 1851 to 2010 (and other frequently requested hurricane facts). NOAA, Technical Memorandum NWS-NHC-6, 49pp.

  • Charney, J. G., and A. Eliassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21(1), 68–75.

    Article  Google Scholar 

  • Chen, J., and R. Huang, 2007: The comparison of climatological characteristics among Asian and Australian monsoon subsystems. Part II: Water vapor transport by summer monsoon. Chinese J. Atmos. Sci., 31(5), 766–778. (in Chinese)

    Google Scholar 

  • Chen, L., X. Xu, Z. Luo, and J. Wang, 2002: Introduction to Tropical Cyclones Dynamics. China Meteorology Press, Beijing, 317pp. (in Chinese)

    Google Scholar 

  • Chen, L., Y. Li, and Z. Cheng, 2010: An overview of research and forecasting on rainfall associated with landfalling tropical cyclones. Adv. Atmos. Sci., 27, 967–976, oi: 10.1007/s00376-010-8171-y.

    Article  Google Scholar 

  • Emanuel, K., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43(6), 585–604.

    Article  Google Scholar 

  • Emanuel, K., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45(7), 1143–1155.

    Article  Google Scholar 

  • Emanuel, K., 2003: Tropical cyclones. Annual Review of Earth and Planetary Sciences, 31, 75–104.

    Article  Google Scholar 

  • Emanuel, K., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61(7), 843–858.

    Article  Google Scholar 

  • Gao, S., Z. Meng, F. Zhang, and L. F. Bosart, 2009: Observational analysis of heavy rainfall mechanisms associated with severe tropical storm Bilis (2006) after its landfall. Mon. Wea. Rev., 137(6), 1881–1897.

    Article  Google Scholar 

  • Ge, X., T. Li, S. Zhang, and M. Peng, 2010: What causes the extremely heavy rainfall in Taiwan during typhoon Morakot (2009)? Atmos. Sci. Lett., 11(1), 46–50.

    Google Scholar 

  • Hill, K. A., and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137(10), 3294–3315.

    Article  Google Scholar 

  • Hong, C.-C., M.-Y. Lee, H.-H. Hsu, and J.-L. Kuo, 2010: Role of submonthly disturbance and 40–50 day ISO on the extreme rainfall event associated with typhoon Morakot (2009) in southern Taiwan. Geophys. Res. Lett., 37(8), L08805, doi: 10.1029/2010GL042761.

    Article  Google Scholar 

  • Huang, R., and J. Chen, 2010: Characteristics of the summertime water vapor transports over the eastern part of china and those over the western part of china and their difference.Chinese J. Atmos. Sci., 34(6), 1035–1045. (in Chinese)

    Google Scholar 

  • Huffman, G. J., and Coauthors, 2007: The TRMM multisatellite precipitation analysis (TMPA): Quasiglobal, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol., 8(1), 38–55.

    Article  Google Scholar 

  • Jiang, H., J. B. Halverson, and J. Simpson, 2008a: On the differences in storm rainfall from hurricanes Isidore and Lili. Part I: Satellite observations and rain potential. Wea. Forecasting, 23(1), 29–43, doi: 10.1175/2007WAF2005096.1.

    Article  Google Scholar 

  • Jiang, H., J. B. Halverson, J. Simpson, and E. J. Zipser, 2008b: On the differences in storm rainfall from hurricanes Isidore and Lili. Part II: Water budget. Wea. Forecasting, 23(1), 44–61.

    Article  Google Scholar 

  • Kepert, J. D., 2010: Tropical cyclone structure and dynamics. Global Perspectives on the Tropical Cyclones, J. C. Chan and J. D. Kepert, Eds., World Scientific, 3–54.

  • Kurihara, Y., 1975: Budget analysis of a tropical cyclone simulated in an axisymmetric numerical model. J. Atmos. Sci., 32(1), 25–59.

    Article  Google Scholar 

  • Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nature Geoscience, 3(3), 157–163.

    Article  Google Scholar 

  • Liang, J., L. Wu, X. Ge, and C.-C. Wu, 2011: Monsoonal influence on typhoon Morakot (2009). Part II: Numerical study. J. Atmos. Sci., 68(10), 2222–2235.

    Article  Google Scholar 

  • Marks, F. D., 1985: Evolution of the structure of precipitation in hurricane Allen (1980). Mon. Wea. Rev., 113(6), 909–930.

    Article  Google Scholar 

  • Mrowiec, A. A., S. T. Garner, and O. M. Pauluis, 2011: Axisymmetric hurricane in a dry atmosphere: Theoretical framework and numerical experiments. J. Atmos. Sci., 68(8), 1607–1619.

    Article  Google Scholar 

  • Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26(1), 3–40.

    Article  Google Scholar 

  • Ooyama, K. V., 1982: Concenptual evolution of the theory and modeling of the tropical cyclone. J. Meteor. Soc. Japan, 60(1), 369–380.

    Google Scholar 

  • Peixoto, J., and A. Oort, 1992: Physics of Climate. Springer-Verlag, 520pp.

  • Rotunno, R., and K. Emanuel, 1987: An air-sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44(3), 542–561.

    Article  Google Scholar 

  • Saha, S., and Coauthors, 2010: The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91(8), 1015–1057.

    Article  Google Scholar 

  • Schade, L. R., 2000: Tropical cyclone intensity and sea surface temperature. J. Atmos. Sci., 57(18), 3122–3130.

    Article  Google Scholar 

  • Smith, R. K., 1997: On the theory of CISK. Quart. J. Roy. Meteor. Soc., 123(538), 407–418.

    Article  Google Scholar 

  • Trenberth, K., 1991: Climate diagnostics from global analyses-conservation of mass in ECMWF analyses. J. Climate, 4(7), 707–722.

    Article  Google Scholar 

  • Trenberth, K. E., C. A. Davis, and J. Fasullo, 2007: Water and energy budgets of hurricanes: Case studies of Ivan and Katrina. J. Geophys. Res., 112, D23106, doi: 10.1029/2006JD008303.

    Article  Google Scholar 

  • Trenberth, K. E., and J. Fasullo, 2007: Water and energy budgets of hurricanes and implications for climate change. J. Geophys. Res., 112, D23107, doi: 10.1029/2006JD008304.

    Article  Google Scholar 

  • Wang, Y., and J. Xu, 2010: Energy production, frictional dissipation, and maximum intensity of a numerically simulated tropical cyclone. J. Atmos. Sci., 67(1), 97–116.

    Article  Google Scholar 

  • Wu, L., J. Liang, and C.-C. Wu, 2011: Monsoonal influence on typhoon Morakot (2009). Part I: Observational analysis. J. Atmos. Sci., 68(10), 2208–2221.

    Article  Google Scholar 

  • Xu, J., and Y. Wang, 2010: Sensitivity of tropical cyclone inner-core size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci., 67(6), 1831–1852.

    Article  Google Scholar 

  • Yang, M.-J., S. A. Braun, and D.-S. Chen, 2010: Water budget of typhoon Nari (2001). Mon. Wea. Rev., 139(12), 3809–3828.

    Article  Google Scholar 

  • Zhang, F., 2011: The future of hurricane prediction. Computing in Science and Engineering, 13(1), 9–12.

    Article  Google Scholar 

  • Zhang, F., Y. Weng, Y.-H. Kuo, J. S. Whitaker, and B. Xie, 2010: Predicting typhoon Morakot’s catastrophic rainfall with a convection-permitting mesoscale ensemble system. Wea. Forecasting, 25(6), 1816–1825.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jilong Chen  (陈际龙).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, W., Chen, J. & Huang, R. Water budgets of tropical cyclones: Three case studies. Adv. Atmos. Sci. 30, 468–484 (2013). https://doi.org/10.1007/s00376-012-2050-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-012-2050-7

Key words

Navigation