Skip to main content
Log in

Intensified eastward and northward propagation of tropical intraseasonal oscillation over the equatorial Indian Ocean in a global warming scenario

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Northward propagation in summer and eastward propagation in winter are two distinguished features of tropical intraseasonal oscillation (TISO) over the equatorial Indian Ocean. According to numerical modeling results, under a global warming scenario, both propagations were intensified. The enhanced northward propagation in summer can be attributed to the enhanced atmosphere-ocean interaction and the strengthened mean southerly wind; and the intensified eastward propagation in winter is associated with the enhanced convection-wind coupling process and the strengthened equatorial Kevin wave. Future changes of TISO propagations need to be explored in more climate models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Annamalai, H., and J. M. Slingo, 2001: Active/break cycles: Diagnosis of the intraseasonal variability of the Asian Summer Monsoon. Climate Dyn., 18, 85–102.

    Article  Google Scholar 

  • Bao, Q., and Coauthors, 2010: An introduction to the coupled model FGOALS1.1-s and its performance in East Asia. Adv. Atmos. Sci., 27, 1131–1142, doi: 10.1007/s00376-010-9177-1.

    Article  Google Scholar 

  • Bergman, J. W., H. H. Hendon, and K. M. Weickmann, 2001: Intraseasonal air-sea interactions at the onset of El Niño. J. Climate, 14, 1702–1719.

    Article  Google Scholar 

  • Bond, N. A., and G. A. Vecchi, 2003: The influence of the Madden-Julian oscillation on precipitation in Oregon and Washington. Wea. Forecasting, 18, 600–613.

    Article  Google Scholar 

  • Ding, Q. H., and B. Wang, 2009: Predicting extreme phases of the Indian summer monsoon. J. Climate, 22, 346–363.

    Article  Google Scholar 

  • Duchon, C., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 1016–1022.

    Article  Google Scholar 

  • Fu, X., and B. Wang, 2004: Different solutions of intraseasonal oscillation exist in atmosphere ocean coupled model and atmosphere-only model. J. Climate, 17, 1263–1271.

    Article  Google Scholar 

  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden-Julian Oscillation. J. Atmos. Sci. 51, 2225–2237.

    Article  Google Scholar 

  • Huffman, G. J., and Coauthors, 2001: Global precipitation at one-degree daily resolution from multi-satellite observations. J. Hydrometeorology, 2, 36–50.

    Article  Google Scholar 

  • Jiang, X., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17, 1022–1039

    Article  Google Scholar 

  • Jones, C., and L. V. Caralho, 2011: Will global warming modify the activity of the Madden-Julian Oscillation. Quart. J. Roy. Meteor. Soc., 137, 544–552.

    Article  Google Scholar 

  • Jones, C., D. E. Waliser, K. M. Lau, and W. Stern, 2004: Global occurrences of extreme precipitation and the Madden-Julian oscillation: Observations and predictability. J. Climate, 17, 4575–4589.

    Article  Google Scholar 

  • Joseph, S., A. K. Sahel, and B. N. Goswami 2008: Eastward propagation of MJO during boreal summer and Indian monsoon droughts. Climate Dyn., 32, 1139–1153.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Kessler, W. S., and R. Kleeman, 2000: Rectification of the Madden-Julian Oscillation into the ENSO cycle. J. Climate, 13, 3560–3575.

    Article  Google Scholar 

  • Kiehl, J. T., and P. R. Gent, 2004: The Community Climate System Model, Version 2. J. Climate, 17, 3666–3682.

    Article  Google Scholar 

  • Kim, D., and Coauthors, 2009: Application of MJO simulation diagnostics to climate models. J. Climate, 22, 6413–6436.

    Article  Google Scholar 

  • Krishnamurti, T. N., and D. Subrahmanyam, 1982: The 30–50-day mode at 850 mb during MONEX. J. Atmos. Sci., 39, 2088–2095.

    Article  Google Scholar 

  • Liebmann, B., and D. L. Hartmann, 1984: An observational study of tropical-midlatitude interaction on intraseasonal time scales during winter. J. Atmos. Sci., 41, 3333–3350.

    Article  Google Scholar 

  • Lin, J. L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 2665–269.

    Article  Google Scholar 

  • Liu, H. L., and Coauthors, 2004: An eddy-permitting oceanic general circulation model and its preliminary evaluations. Adv. Atmos. Sci., 21, 675–690.

    Article  Google Scholar 

  • Madden, R. A., and P. R. Julian 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–708.

    Article  Google Scholar 

  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 1109–1123.

    Article  Google Scholar 

  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50 day tropical oscillation: A review. Mon. Wea. Rev., 112, 814–837.

    Article  Google Scholar 

  • Matthews, A. J., 2000: Propagation mechanisms for the Madden-Julian Oscillation. Quart. J. Roy. Meteor. Soc., 126, 2637–2651.

    Article  Google Scholar 

  • Milliff, R. F., and R. A. Madden, 1996: The existence and vertical structure of fast, eastward-moving disturbances in the equatorial troposphere. J. Atmos. Sci., 53, 586–597.

    Article  Google Scholar 

  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747–756.

    Article  Google Scholar 

  • Pan, L. L., and T. Li, 2008: Interactions between the tropical ISO and midlatitude low-frequency flow. Climate Dyn., 31, 375–388.

    Article  Google Scholar 

  • Rayner, N. A., and Coauthors, 2003: Global analyses of SST, sea ice and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, doi: 10.1029/2002JD002670.

  • Rajeevan, M, S. Gadgil, and J. Bhate, 2010: Active and break spells of the Indian summer monsoon. Proceedings of the Indian Academy of Sciences-Earth & Planetary Sciences, 119, 229–247.

    Google Scholar 

  • Sperber, K. R., 2003: Propagation and the vertical structure of the Madden-Julian Oscillation. Mon. Wea. Rev., 131, 3018–3037.

    Article  Google Scholar 

  • Takayabu, Y. N., and Coauthors, 1999: Abrupt termination of the 1997–98 El Niño in response to a Madden-Julian oscillation. Nature, 402, 279–282.

    Article  Google Scholar 

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, cited 2009: A summary of the CMIP5 experiment design. [Available online at http://cmippcmdi.llnl.gov/cmip5/experiment design.html.]

  • Tian, B. J., and Coauthors, 2008: Does the Madden-Julian oscillation influence aerosol variability? J. Geophys. Res., 113, D12215, doi: 10.1029/2007JD009372.

    Article  Google Scholar 

  • Waliser, D. E., K. M. Lau, and J.-H. Kim, 1999: The influence of coupled sea surface temperatures on the Madden-Julian oscillation: A model perturbation experiment. J. Atmos. Sci., 56, 333–358.

    Article  Google Scholar 

  • Waliser, D. E., R. Murtugudde, P. Strutton, and J. L. Li, 2005: Subseasonal organization of ocean chlorophyll: Prospects for prediction based on the Madden-Julian Oscillation. Geophys. Res. Lett., 3, L23602, doi: 10.1029/2005GL024300.

    Article  Google Scholar 

  • Waliser, D. E., and Coauthors, 2009: MJO simulation diagnostics. J. Climate, 22, 3006–3030.

    Article  Google Scholar 

  • Wang, B., 2002: Kelvin wave. Encyclopedia of Atmospheric Sciences, Holton et al., Eds., Elsevier, Amsterdam, 1062–1068.

    Google Scholar 

  • Wang, B., 2005: Theories. Intraseasonal Variability of the Atmosphere-Ocean Climate System, K. M. Lau and D. E. Waliser, Eds., Springer-Verlag, Heidelberg, Germany, 307–351.

    Chapter  Google Scholar 

  • Wang, B., and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteor. Atmos. Phys., 44, 43–61.

    Article  Google Scholar 

  • Wang, B., and X. Xie, 1998: Coupled modes of the warm pool climate system. Part I: The role of air-sea interaction in maintaining Madden-Julian Oscillation. J. Climate, 11, 2116–2135.

    Article  Google Scholar 

  • Weickmann, K. M., G. R. Lussky, and J. E. Kutzbach, 1985: Intraseasonal (30–60 day) fluctuations of outgoing longwave radiation and 250 mb stream function during northern winter. Mon. Wea. Rev., 113, 941–961.

    Article  Google Scholar 

  • Wentz, F. J., and Coauthors, 2000: Satellite measurements of sea surface temperature through clouds. Science, 288, 847–850.

    Article  Google Scholar 

  • Wheeler, M. C., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374–399.

    Article  Google Scholar 

  • Wu, G. X., H. Liu, Y. Zhao, and W. P. Li, 1996: A ninelayer atmospheric general circulation model and its performance. Adv. Atmos. Sci., 13, 1–18.

    Article  Google Scholar 

  • Yang, J., B. Wang, and B. Wang, 2008: Anticorrelated intensity change of the quasi-biweekly and 30-50 day oscillations over the South China Sea. Geophys. Res. Lett., doi: 10.1029/2008GL034449.

  • Yang, J., Q. Bao, X. C. Wang, and T. J. Zhou, 2011: The tropical intraseasonal oscillation in SAMIL coupled and uncoupled general circulation models. Adv. Atmos. Sci., 29(3), doi: 10.1007/s00376-011-1087-3.

  • Yasunari, T., 1979: Cloudiness fluctuations associated with the northern hemisphere summer monsoon. J. Metor. Soc. Japan, 57, 227–242.

    Google Scholar 

  • Zhang, Z. D., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, doi: 10.1029/2004RG000158.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Bao  (包 庆).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Bao, Q. & Wang, X. Intensified eastward and northward propagation of tropical intraseasonal oscillation over the equatorial Indian Ocean in a global warming scenario. Adv. Atmos. Sci. 30, 167–174 (2013). https://doi.org/10.1007/s00376-012-1260-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-012-1260-3

Key words

Navigation