Skip to main content
Log in

Impacts of multi-scale solar activity on climate. Part II: Dominant timescales in decadal-centennial climate variability

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Part II of this study detects the dominant decadal-centennial timescales in four SST indices up to the 2010/2011 winter and tries to relate them to the observed 11-yr and 88-yr solar activity with the sunspot number up to Solar Cycle 24. To explore plausible solar origins of the observed decadal-centennial timescales in the SSTs and climate variability in general, we design a simple one-dimensional dynamical system forced by an annual cycle modulated by a small-amplitude single- or multi-scale “solar activity.” Results suggest that nonlinear harmonic and subharmonic resonance of the system to the forcing and period-doubling bifurcations are responsible for the dominant timescales in the system, including the 60-yr timescale that dominates the Atlantic Multidecadal Oscillation. The dominant timescales in the forced system depend on the system’s parameter setting. Scale enhancement among the dominant response timescales may result in dramatic amplifications over a few decades and extreme values of the time series on various timescales. Three possible energy sources for such amplifications and extremes are proposed. Dynamical model results suggest that solar activity may play an important yet not well recognized role in the observed decadal-centennial climate variability. The atmospheric dynamical amplifying mechanism shown in Part I and the nonlinear resonant and bifurcation mechanisms shown in Part II help us to understand the solar source of the multi-scale climate change in the 20th century and the fact that different solar influenced dominant timescales for recurrent climate extremes for a given region or a parameter setting. Part II also indicates that solar influences on climate cannot be linearly compared with non-cyclic or sporadic thermal forcings because they cannot exert their influences on climate in the same way as the sun does.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amstrong, J. S., 2007: Significance tests harm progress in forecasting. Int. J. Forecast, 23, 321–327, doi: 10.1016/j/okfprecast/2007.03.004.

    Article  Google Scholar 

  • Ashok, K., S. Behera, A. S. Rao, H.-Y. Weng, and T. Yamagata, 2007: El Niño Modoki and its teleconnection. J. Geophys. Res., 112, C11007, doi: 10.1029/2006JC003798.

    Article  Google Scholar 

  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179–229.

    Article  Google Scholar 

  • Benestad, R. E., and G. A. Schmidt, 2009: Solar trends and global warming. J. Geophys, Res., 114, D14101, doi: 10.1029/2008JD11639.

    Article  Google Scholar 

  • Coughlin, K., and K.-K. Tung, 2004: Eleven-year solar cycle signal throughout the lower atmosphere. J. Geophys. Res., 109, D21105, doi: 10.1029/2004JD004873.

    Article  Google Scholar 

  • Camp, C. D., and K.-K. Tung, 2007: The influence of solar cycle and QBO on the late winter stratospheric polar vortex. J. Atmos. Sci., 64, 1267–1283.

    Article  Google Scholar 

  • Duffy, P. B., B. D. Santer, and T. M. L. Wigley, 2009: Solar variability does not explain late-20th-century warming. Physics Today, 62, 48–49.

    Article  Google Scholar 

  • Enfield, E. B., and S. L. Cid, 1991: Low-frequency changes in El Niño-Southern Oscillation. J. Climate, 4, 1137–1146.

    Article  Google Scholar 

  • Feynman, J., and P. F. Fougere, 1984: Eighty-eight year periodicity in solar terrestrial phenomena confirmed. J. Geophys. Res., 89, 3023–3027.

    Article  Google Scholar 

  • Fischer, P., and K.-K. Tung, 2008: A reexamination of the QBO period modulation by the solar cycle. J. Geophys. Res., 113, D07114, doi: 10.1029/2007JD008983.

    Article  Google Scholar 

  • Fisher, H., and B. Mieding, 2005: A 1,000-year ice core record of interannual to multidecadal variations in atmospheric circulation over the North Atlantic. Climate Dyn., 25, 65–74, doi: 10.1007/s00382-005-0011-x.

    Article  Google Scholar 

  • Gleissberg, W., 1965: The eighty-year solar cycle in auroral frequency numbers. Journal of the British Astronomical Association, 75, 227–231.

    Google Scholar 

  • Gray, L. J., and Coauthors, 2010: Solar influences on climate. Rev. Geophys., 48, RG4001.

    Article  Google Scholar 

  • Haigh, J. D., 2007: The sun and the Earth’s climate. Living Rev. Solar Phys., 4, lrsp-2007-2. [Available online from http://www.livingreviews.org/lrsp-2007-2]

  • Hameed, S., and J. M. Lee, 2005: A mechanism for sunclimate connection. Geophys. Res. Lett., 32, L23817, doi: 10.1029/2005GL024393.

    Article  Google Scholar 

  • Huth, R., L. Pokorná, J. Bochnicek, and P. Hejda, 2006: Solar cycle effects on modes of low-frequency circulation variability. J. Geophys. Res., 111, D22107, doi: 10.1029/2005JD006813.

    Article  Google Scholar 

  • IPCC, 2007: Climate Change, 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon et al., Eds., Cambridge U. Press, New York.

    Google Scholar 

  • Jin, F.-F., J. D. Neelin, and M. Ghil, 1996: El Niño/Southern Oscillation and the annual cycle: Subharmonic frequency-locking and aperiodicity. Physics D, 98, 442–465.

    Article  Google Scholar 

  • Kasatkina, E. A., O. I. Shumilov, and M. Krapiee, 2007: On periodicities in long term climatic variations near 68°N, 30°E. Adv. Geosci., 13, 25–29.

    Article  Google Scholar 

  • Khramova, M., E. Kononovich, and S. Krasotkin, 2002: Solar cyclicity: Fine structure and forecasting. Proceedings of the 10 th European Solar Physics Meeting, “Solar Variability: From Core to Outer Frontiers”, Praque, Czech Republic, 9-14 September 2002 (ESA SP-506, December 2002), 145–148.

  • Kodera, K., 2002: Solar cycle modulation of the North Atlantic Oscillation: Implications for the spatial structure of the NAO. Geophys. Res. Lett., 29, 1218, doi: 10.1029/2001GL014557.

    Article  Google Scholar 

  • Kodera, K., and Y. Kuroda, 2005: A possible mechanism of solar modulation of the spatial structure of the North Atlantic Oscillation. J. Geophys. Res., 110, D02111, doi: 10.1029/2004JD005258.

    Article  Google Scholar 

  • Kodera, K., M. Chiba, and K. Shibata, 1991: A general circulation model study of the solar and QBO modulation of the stratospheric circulation during the Northern Hemisphere winter. Geophys. Res. Lett., 18, 1209–1212.

    Article  Google Scholar 

  • Kryjov, V. N., and C. K. Park, 2007: Solar modulation of the El -Niño/Southern Oscillation impact on the Northern Hemisphere annular mode. Geophys. Res. Lett., 34, L10701, doi: 1029/2006GL028015.

    Article  Google Scholar 

  • Kuroda, Y., 2007: Effect of QBO and ENSO on the solar cycle modulation of winter North Atlantic Oscillation. J. Meteor. Soc. Japan, 85, 889–898.

    Article  Google Scholar 

  • Kuroda, Y., and K. Kodera, 2005: Solar cycle modulation of the southern annular mode. Geophys. Res. Lett., 32, L13802, doi: 10.1029/2005GL022516.

    Article  Google Scholar 

  • Labitzke, K., and H. van Loon, 1988: Association between the 11-year solar cycle, the QBO, and the atmosphere, I, The troposphere and stratosphere on the Northern Hemisphere winter. J. Atmos. Terr. Phys., 50, 197–206.

    Article  Google Scholar 

  • Latif, M., and T. P. Barnett, 1994: Causes of decadal climate variability over the North Pacific and North America. Science, 266, 634–637.

    Article  Google Scholar 

  • Lau, K. M., and H.-Y. Weng, 1995: Climate signal detection using wavelet transform: how to make a time series sing. Bull. Amer. Meteor. Soc., 76, 2391–2402.

    Article  Google Scholar 

  • Le Mouël, J.-L., V. Courtillot, E. Blanter, and M. Shnirman, 2008: Evidence for a solar signature in 20thcentury temperature data from the USA and Europe. C. R. Geosci., 340, 421–430.

    Article  Google Scholar 

  • Lean, J., 1991: Variations in the sun’s radiative output. Rev. Geophys., 29, 505–535.

    Article  Google Scholar 

  • Lean, J. L., and D. H. Rind, 2008: How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys. Res. Lett., 35, L18701, doi: 10.1029/2008GL034864.

    Article  Google Scholar 

  • Lockwood, M., and C. Fröhlich, 2007: Recent oppositely directed trends in solar climate forcings and the global mean surface air temperature. Proc. Roy. Soc., A463, 2447–2460, doi: 10.1098/rspa.2007.1880.

    Google Scholar 

  • Lorenz, E. N., 1964: The problem of deducing the climate from the governing equations. Tellus, XVI, 1–11.

    Google Scholar 

  • Lorenz, E. N., 1990: Can chaos and intrasitivity lead to interannual variability? Tellus, 42A, 378–389.

    Google Scholar 

  • May, R. M., 1976: Simple mathematical models with very complicated dynamics. Nature, 261, 459, doi: 10.1038/261459a0.

    Article  Google Scholar 

  • Meehl, G. A., J. M. Arblaster, K. Matthes, F. Sassi, and H. van Loon, 2009: Amplifying the Pacific climate system response to a small 11-yr solar cycle forcing. Science, 325, 1114, doi: 10.1126/science.1172872.

    Article  Google Scholar 

  • Mitchell, J. M. Jr., 1976: An overview of climate variability and its causal mechanisms. Quaternary Res., 6, 481–493.

    Article  Google Scholar 

  • Ogurtsov, M. G., Y. A. Nagovitsyn, G. E. Kocharov, and H. Jungner, 2002: Long-period cycles of the sun’s activity recorded in direct solar data and proxies. Solar Physics, 211, 371–394.

    Article  Google Scholar 

  • Peristykh, A. N., and P. E. Damon, 2003: Persistence of the Gleissberg 88-year solar cycle over the last ∼12,000 years: Evidence from cosmogenic isotopes. J. Geophys. Res., 108, A1, 1003, doi: 10.1029/2002JA009390.

    Article  Google Scholar 

  • Pierce, J. R., and P. J. Adams, 2009: Can cosmic rays affect cloud condensation nuclei by altering new particle formation rates? Geophys. Res. Lett., 36, L09820, doi: 10.1029/2009GL037946.

    Article  Google Scholar 

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of SST, sea ice and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, doi: 10.1029/2002JD002670.

  • Salby, M., and P. Callaghan, 2000: Connection between the solar cycle and the QBO: The missing link. J. Climate, 13, 2652–2662.

    Article  Google Scholar 

  • Scafetta, N., and B. J. West, 2007: Phenomenological reconstructions of the solar signature in the Northern Hemisphere surface temperature records since 1600. J. Geophys. Res., 112, D24S03, doi: 10.1029/2007JD008437.

    Article  Google Scholar 

  • Scafetta, N., and B. J. West, 2008: Is climate sensitive to solar variability? Physics Today, 61, 50–51, doi:10.1063/1.2897951.

    Article  Google Scholar 

  • Shapiro, A. I., W. Schmutz, E. Rozanov, M. Schoell, M. Haberreiter, A. V. Shapiro, and S. Nyeki, 2011: A new approach to long-term reconstruction of the solar irradiance leads to large historical solar forcing. Astron. Astrophys., 529, A67, doi: 10.1051/0004-6361/201016173.

    Article  Google Scholar 

  • Sonett, C. P., 1982: Sunspot time series: spectrum from square law modulation of the hale cycle. Geophys. Res. Lett., 9, 1313–1316.

    Article  Google Scholar 

  • Soon, W. W. H., 2009: Solar arctic-mediated climate variation on multidecadal to centennial timescales: Empirical evidence, mechanistic explanation, and testable consequences. Physical Geography, 30, 144–184.

    Article  Google Scholar 

  • Tobias, S. M., and N. O. Weiss, 2000: Resonant interactions between solar activity and climate. J. Climate, 13, 3745–3759.

    Article  Google Scholar 

  • Tung, K.-K., and C. D. Camp, 2008: Solar cycle warming at the Earth’s surface in NCEP and ERA-40 data: A linear discriminant analysis. J. Geophys. Res., 113, D05114, doi: 10.1029/2007JD009164.

    Article  Google Scholar 

  • van Loon, H., G. A. Meehl, and D. J. Shea, 2007: Coupled air-sea response to solar forcing in the Pacific region during northern winter. J. Geophys. Res., 112, D02108, doi: 10.1029/2006JD007378.

    Article  Google Scholar 

  • Wang, S.-W., X.-Y. Wen, and J.-B. Huang, 2010: Global cooling in the immediate future? Chinese Sci. Bull., 55, 3847–3852.

    Article  Google Scholar 

  • Weng, H.-Y., 2001: A combined dynamic and kinematic view of amplitude vacillation in baroclinic flows. Dynamics of Atmospheric and Oceanic Circulations and Climate, Wang et al., Eds., Chinese Academy of Sciences, Beijing, China, 229–251.

    Google Scholar 

  • Weng, H.-Y., 2003: Impact of the 11-yr solar activity on the QBO in the climate system. Adv. Atmos. Sci., 20, 303–309.

    Article  Google Scholar 

  • Weng, H.-Y., 2005: The influence of the 11-yr solar cycle on the interannual-centennial climate variability. Journal of Atmospheric and Solar-Terrestrial Physics, 67, 793–805.

    Article  Google Scholar 

  • Weng, H.-Y., 2012: Impacts of Multi-Scale Solar Activity on Climate. Part I: Atmospheric Circulation Patterns and Climate Extremes. Adv. Atmos. Sci., 29(4), 867–886, doi: 10.1007/s00376-012-1238-1.

    Article  Google Scholar 

  • Weng, H.-Y., and K.-M. Lau, 1994: Wavelets, period doubling, and time-frequency localization with application to organization of convection over the tropical western Pacific. J. Atmos. Sci., 51, 2523–2541.

    Article  Google Scholar 

  • Weng, H.-Y., K. Ashok, S. Behera, A. S. Rao, and T. Yamagata, 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Climate Dyn., 29, 113–129, doi: 10.1007/s00382-007-0234-0.

    Article  Google Scholar 

  • Yin, Z. Q., L. H. Ma, Y. B. Han, and Y. G. Han, 2007: Long-term variations of solar activity. Chinese Science Bulletin, 52, doi: 10.1007/s11434-007-0384-9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hengyi Weng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weng, H. Impacts of multi-scale solar activity on climate. Part II: Dominant timescales in decadal-centennial climate variability. Adv. Atmos. Sci. 29, 887–908 (2012). https://doi.org/10.1007/s00376-012-1239-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-012-1239-0

Key words

Navigation