Skip to main content
Log in

On the temporal and spatial structure of troposphere-to-stratosphere transport in the lowermost stratosphere over the Asian monsoon region during boreal summer

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

This study produced a novel characterization of the troposphere-to-stratosphere transport (TST) over the Asian monsoon region during boreal summer, using a comprehensive analysis of 60-day backward trajectories initialized in the stratosphere. The trajectory datasets were derived from the high-resolution Lagrangian particle dispersion model (FLEXPART) simulation driven by the wind fields acquired from the National Center for Environmental Prediction (NCEP). The results indicate that the distribution of residence time (t TST) of tropopause-crossing trajectories in the lowermost stratosphere represents a horizontal signature of the Asian summer monsoon. Vertically, the distribution of t TST can be roughly separated into two layers: a consistent lower layer with t TST <5 days forming a narrow band, corresponding to a layer ∼3 km thick following the location of the tropopause, and an upper layer at a larger distance from the local tropopause. The maximum residence time was ∼20 days, especially within the Asian high anticyclone consistent with its confinement effects. In general, the overall geographical distribution of dehydration points was not coincident with the location of tropopause crossing. TST trajectories, which were initialized in the stratosphere, underwent their Lagrangian cold points mostly in the tropics and subtropics 1–4 days after the TST event; they were characterized by a wide range of temperature differences, with a mean value of 3–12 K. The vertical extent of the influence of tropospheric intrusion on the Asian monsoon region in the stratosphere exhibited a peak at ∼16.5–18.5 km, and the uppermost height was ∼21 km.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bannister, R. N., A. O’Neill, A. R. Gregory, and K. M. Nissen, 2004: The role of the south-east Asian monsoon and other seasonal features in creating the “tape-recorder” signal in the Unified Model. Quart J. Roy. Meteor. Soc., 130, 1531–1554.

    Article  Google Scholar 

  • Berthet, G., J. G. Esler, and P. H. Haynes, 2007: A Lagrangian perspective of the tropopause and the ventilation of the lowermost stratosphere. J. Geophys. Res., 112 (D18102), doi:10.1029/2006JD008295.

    Google Scholar 

  • Bourqui, M. S., and P. Y. Trepanier, 2010: Descent of deep stratospheric intrusions during the IONS August 2006 campaign. J. Geophys. Res., 115 (D1830-1), doi:10.1029/2009JD013183.

    Google Scholar 

  • Chen, B., X. D. Xu, J. C. Bian, and X. H. Shi, 2010: Irreversible stratosphere-troposphere mass exchange characteristics over the Asian summer monsoon region. Chinese Journal of Geophysics, 53, 1050–1059. (in Chinese)

    Google Scholar 

  • Chen, B., X. D. Xu, and X. H. Shi, 2011: The study on the dynamic effect of south asian high on upper troposphere water vapor abnormal distribution over the Asian monsoon region in boreal summer. Acta Meteorologica Sinica, 69(3), 464–471. (in Chinese)

    Google Scholar 

  • Chen, B., D. Xu, S. Yang, and T. L. Zhao, 2012: Climatological perspectives of air transport from atmospheric boundary layer to tropopause layer over Asian monsoon regions during boreal summer inferred from Lagrangian approach. Atmos. Chem. Phys., 12(13), 5827–5839.

    Article  Google Scholar 

  • Dessler, A. E., and S. C. Sherwood, 2004: Effect of convection on the summertime extratropical lower stratosphere. J. Geophys. Res., 109 (D23301), doi:10.1029/2004JD005209.

    Google Scholar 

  • Dethof, A., A. O’Neill, J. M. Slingo, and H. G. J. Smit, 1999: A mechanism for moistening the lower stratosphere involving the Asian summer monsoon. Quart J. Roy. Meteor. Soc., 125, 1079–1106.

    Google Scholar 

  • Devasthale, A., and S. Fueglistaler, 2010: A climatological perspective of deep convection penetrating the TTL during the Indian summer monsoon from the AVHRR and MODIS instruments. Atmos. Chem. Phys. Discuss., 10, 2809–2834.

    Article  Google Scholar 

  • Forster, P. M. D. F., and K. P. Shine, 2002: Assessing the climate impact of trends in stratospheric water vapor. Geophys. Res. Lett., 29, 1086, doi:10.1029/2001GL013909.

    Article  Google Scholar 

  • Fu, R., and Coauthors, 2006: Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau. Proc. the National Academy of Sciences of the United States of America, 103, 5664–5669.

    Article  Google Scholar 

  • Fueglistaler, S., H. Wernli, and T. Peter, 2004: Tropical troposphere-to-stratosphere transport inferred from trajectory calculations. J. Geophys. Res., 109 (D03108), doi:10.1029/2003JD004069.

    Google Scholar 

  • Fueglistaler, S., M. Bonazzola, P. H. Haynes, and T. Peter, 2005: Stratospheric water vapor predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics. J. Geophys. Res., 110 (D08107), doi:10.1029/2004JD005516.

    Google Scholar 

  • Fueglistaler, S., A. E. Dessler, T. J. Dunkerton, I. Folkins, Q. Fu, and P. W. Mote, 2009: Tropical tropopause layer. Rev. Geophys., 47 (RG1004), doi:10.1029/2008rg000267.

  • Gettelman, A., D. E. Kinnison, T. J. Dunkerton, and G. P. Brasseur, 2004: Impact of monsoon circulations on the upper troposphere and lower stratosphere. J. Geophys. Res., 109 (D22101), doi:10.1029/2004JD004878.

    Google Scholar 

  • Gettelman, A., and Coauthors, 2010: Multimodel assessment of the upper troposphere and lower stratosphere: Tropics and global trends. J. Geophys. Res., 115 (D00M08), doi:10.1029/2009JD013638.

  • Hegglin, M. I., C. D. Boone, G. L. Manney, and K. A. Walker, 2009: A global view of the extratropical tropopause transition layer from Atmospheric Chemistry Experiment Fourier Transform Spectrometer O3, H2O, and CO. J. Geophys. Res., 114 (D00B11), doi:10.1029/2008JD009984.

    Google Scholar 

  • Highwood, E. J., and B. J. Hoskins, 1998: The tropical tropopause. Quart. J. Roy. Meteor. Soc., 124, 1579–1604.

    Article  Google Scholar 

  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratospheretroposphere exchange. Rev. Geophys., 33, 403–439.

    Article  Google Scholar 

  • Homeyer, C. R., K. P. Bowman, L. L. Pan, E. L. Atlas, R.-S. Gao, and T. L. Campos, 2011: Dynamical and chemical characteristics of tropospheric intrusions observed during START08. J. Geophys. Res., 116 (D06111), doi:10.1029/2009JD013664.

    Google Scholar 

  • Hoor, P., H. Wernli, and M. I. Hegglin, 2010: Transport timescales and tracer properties in the extratropical UTLS. Atmospheric Chemistry Physics, 10, 12953–12991.

    Article  Google Scholar 

  • Hoskins, B. J., and M. J. Rodwell, 1995: A model of the Asian Summer Monsoon. Part I: The global scale. J. Atmos. Sci., 52, 1329–1340.

    Article  Google Scholar 

  • Jackson, D. R., S. J. Driscoll, E. J. Highwood, J. E. Harries, and J. M. Russell, 1998: Troposphere to stratosphere transport at low latitudes as studied using HALOE observations of water vapour 1992-1997. Quart. J. Roy. Meteor. Soc., 124, 169–192.

    Google Scholar 

  • James, R., M. Bonazzola, B. Legras, K. Surbled, and S. Fueglistaler, 2008: Water vapor transport and dehydration above convective outflow during Asian monsoon. Geophys. Res. Lett., 35 (L20810), doi:10.1029/2008gl035441.

    Google Scholar 

  • Jiang, J. H., N. J. Livesey, H. Su, L. Neary, J. C. McConnell, and N. A. D. Richards, 2007: Connecting surface emissions, convective uplifting, and long-range transport of carbon monoxide in the upper troposphere: New observations from the Aura Microwave Limb Sounder. Geophys. Res. Lett., 34 (L18812), doi:10.1029/2007gl030638.

    Google Scholar 

  • Konopka, P., J. U. Grooss, G. Gunther, F. Ploeger, R. Pommrich, R. Muller, and N. Livesey, 2010: Annual cycle of ozone at and above the tropical tropopause: Observations versus simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS). Atmos. Chem. Phys., 10, 121–132.

    Article  Google Scholar 

  • Krebsbach, M., and Coauthors, 2006: Seasonal cycles and variability of O3 and H2O in the UT/LMS during SPURT. Atmos. Chem. Phys., 6, 109–125.

    Article  Google Scholar 

  • Li, Q., and Coauthors, 2005: Convective outflow of South Asian pollution: A global CTM simulation compared with EOS MLS observations. Geophys. Res. Lett., 32 (L14826), doi:10.1029/2005gl022762.

  • Pan, L. L., W. J. Randel, B. L. Gary, M. J. Mahoney, and E. J. Hintsa, 2004: Definitions and sharpness of the extratropical tropopause: A trace gas perspective. J. Geophys. Res., 109 (D23103), doi:10.1029/2004JD004982.

    Google Scholar 

  • Park, M., W. J. Randel, A. Gettelman, S. T. Massie, and J. H. Jiang, 2007: Transport above the Asian summer monsoon anticyclone inferred from Aura Microwave Limb Sounder tracers. J. Geophys. Res., 112 (D16309), doi:10.1029/2006JD008294.

    Google Scholar 

  • Park, M., W. J. Randel, L. K. Emmons, P. F. Bernath, K. A. Walker, and C. D. Boone, 2008: Chemical isolation in the Asian monsoon anticyclone observed in Atmospheric Chemistry Experiment (ACE-FTS) data. Atmos. Chem. Phys., 8, 757–764.

    Article  Google Scholar 

  • Park, M., W. J. Randel, L. K. Emmons, and N. J. Livesey, 2009: Transport pathways of carbon monoxide in the Asian summer monsoon diagnosed from Model of Ozone and Related Tracers (MOZART). J. Geophys. Res., 114 (D08303), doi:10.1029/2008JD010621.

    Google Scholar 

  • Ploeger, F., and Coauthors, 2011: Insight from ozone and water vapour on transport in the tropical tropopause layer (TTL). Atmos. Chem. Phys., 11(1), 407–419. doi:10.5194/acp-11-407-2011.

    Article  Google Scholar 

  • Randel, W. J., and M. Park, 2006: Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS). J. Geophys. Res., 111 (D12314), doi:10.1029/2005JD006490.

    Google Scholar 

  • Randel, W. J., and Coauthors, 2010: Asian monsoon transport of pollution to the stratosphere. Science, 328, 611–613.

    Article  Google Scholar 

  • Scheeren, H. A., and Coauthors, 2003: The impact of monsoon outflow from India and Southeast Asia in the upper troposphere over the eastern Mediterranean. Atmos. Chem. Phys., 3, 1589–1608.

    Article  Google Scholar 

  • Solomon, S., K. H. Rosenlof, R. W. Portmann, J. S. Daniel, S. M. Davis, T. J. Sanford, and G.-K. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 1219–1223.

    Article  Google Scholar 

  • Stohl, A., C. Forster, and H. Sodemann, 2008: Remote sources of water vapor forming precipitation on the Norwegian west coast at 60 degrees N—A tale of hurricanes and an atmospheric river. J. Geophys. Res., 113 (D05102), doi:10.1029/2007JD009006.

    Google Scholar 

  • Stohl, A., C. Forster, A. Frank, P. Seibert, and G. Wotawa, 2005: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys., 5, 2461–2474.

    Article  Google Scholar 

  • Wright, J. S., R. Fu, S. Fueglistaler, Y. S. Liu, and Y. Zhang, 2011: The influence of summertime convection over Southeast Asia on water vapor in the tropical stratosphere. J. Geophys. Res., 116 (D12302), doi:10.1029/2010JD015416.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Chen  (陈 斌).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, B., Xu, XD., Yang, S. et al. On the temporal and spatial structure of troposphere-to-stratosphere transport in the lowermost stratosphere over the Asian monsoon region during boreal summer. Adv. Atmos. Sci. 29, 1305–1317 (2012). https://doi.org/10.1007/s00376-012-1171-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-012-1171-3

Key words

Navigation