Skip to main content
Log in

An investigation of the effects of wave state and sea spray on an idealized typhoon using an air-sea coupled modeling system

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

In this study, the impact of atmosphere-wave coupling on typhoon intensity was investigated using numerical simulations of an idealized typhoon in a coupled atmosphere-wave-ocean modeling system. The coupling between atmosphere and sea surface waves considered the effects of wave state and sea sprays on air-sea momentum flux, the atmospheric low-level dissipative heating, and the wave-state-affected seaspray heat flux. Several experiments were conducted to examine the impacts of wave state, sea sprays, and dissipative heating on an idealized typhoon system. Results show that considering the wave state and sea-spray-affected sea-surface roughness reduces typhoon intensity, while including dissipative heating intensifies the typhoon system. Taking into account sea spray heat flux also strengthens the typhoon system with increasing maximum wind speed and significant wave height. The overall impact of atmosphere-wave coupling makes a positive contribution to the intensification of the idealized typhoon system. The minimum central pressure simulated by the coupled atmosphere-wave experiment was 16.4 hPa deeper than that of the control run, and the maximum wind speed and significant wave height increased by 31% and 4%, respectively. Meanwhile, within the area beneath the typhoon center, the average total upward air-sea heat flux increased by 22%, and the averaged latent heat flux increased more significantly by 31% compared to the uncoupled run.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alamaro, M., 2001: Wind wave tank for experimental investigation of momentum and enthalpy transfer from the ocean surface at high wind speed. M. S. thesis, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 79pp.

  • Alamaro, M., K. A. Emanuel, J. J. Colton, W. R. McGillis, and J. Edson, 2002: Experimental investigation of air-sea transfer of momentum and enthalpy at high wind speed. 25th Conference on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 17C.6. [Available online at http://ams.confex.com/ams/25HURR/techprogram/paper 35185.htm].

    Google Scholar 

  • Andreas, E. L., 1989: Thermal and size evolution of sea spray droplets. CRREL Rep. 89-11, 47pp. [Available online at http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA210484].

  • Andreas, E. L., 1990: Time constants for the evolution of sea spray droplets. Tellus (B), 42, 481–497.

    Article  Google Scholar 

  • Andreas, E. L., 1992: Sea spray and the turbulent air-sea heat fluxes. J. Geophys. Res., 97, 11429–11441.

    Article  Google Scholar 

  • Andreas, E. L., and K. A. Emanuel, 2001: Effects of sea spray on tropical cyclone intensity. J. Atmos. Sci., 58, 3741–3751.

    Article  Google Scholar 

  • Andreas, E. L., J. B. Edson, E. C. Monahan, M. P. Rouault, and S. D. Smith, 1995: The spray contribution to net evaporation from the sea: A review of recent progress. Bound.-Layer Meteor., 72, 3–52.

    Article  Google Scholar 

  • Bao, J.-W., J. M. Wilczak, J.-K. Choi, and L. H. Kantha, 2000: Numerical simulations of air-sea interaction under high wind conditions using a coupled model: A study of hurricane development. Mon. Wea. Rev., 128, 2190–2210.

    Article  Google Scholar 

  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233–240.

    Article  Google Scholar 

  • Booij, N., R. C. Ris, and L. H. Holthuijsen, 1999: A third-generation wave model for coastal regions, 1. Model description and validation. J. Geophys. Res., 104, 7649–7666.

    Article  Google Scholar 

  • Businger, S., and J. A. Businger, 2001: Viscous dissipation of turbulence kinetic energy in storms. J. Atmos. Sci., 58, 3793–3796.

    Article  Google Scholar 

  • Chaen, M., 1973: Studies on the production of sea-salt particles on the sea surface. Memoirs of the Faculty of Fisheries, Kagoshima University, 22, 49–107.

    Google Scholar 

  • Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639–640.

    Article  Google Scholar 

  • Desjardins, S., J. Mailhot, and R. Lalbeharry, 2000: Examination of the impact of a coupled atmospheric and ocean wave system. Part I: Atmospheric aspects. J. Phys. Oceanogr., 30, 385–401.

    Google Scholar 

  • Donelan, M. A., 1990: Air-sea interaction. The Sea: Ocean Engineering Science, Mehaute and Hanes, Eds., Wiley-Interscience, 239–292.

  • Donelan, M. A., F. W. Dobson, S. D. Smith, and R. J. Anderson, 1993: On the dependence of sea surface roughness on wave development. J. Phys. Oceanogr., 23, 2143–2149.

    Article  Google Scholar 

  • Donelan, M. A., and Coauthors, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306., doi:18310.11029/12004GL019460.

    Article  Google Scholar 

  • Doyle, J. D., 1995: Coupled ocean wave/atmosphere mesoscale model simulations of cyclogenesis. Tellus, 47A, 766–788.

    Google Scholar 

  • Doyle, J. D., 2002: Coupled atmosphere-ocean wave simulations under high wind conditions. Mon. Wea. Rev., 130, 3087–3099.

    Article  Google Scholar 

  • Drennan, W. M., H. C. Graber, D. Hauser, and C. Quentin, 2003: On the wave age dependence of wind stress over pure wind seas. J. Geophys. Res., 108, 8062., doi:8010.1029/2000JC000715.

    Article  Google Scholar 

  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107.

    Article  Google Scholar 

  • Fairall, C. W., J. D. Kepert, and G. J. Holland, 1994: The effect of sea spray on surface energy transports over the ocean. The Global Atmosphere-Ocean System, 2, 121–142.

    Google Scholar 

  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of airsea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571–591.

    Article  Google Scholar 

  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103–120.

    Article  Google Scholar 

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.

    Article  Google Scholar 

  • Iida, N., Y. Toba, and M. Chaen, 1992: A new expression for the production rate of sea water droplets on the sea surface. J. Oceanogr., 48, 439–460.

    Article  Google Scholar 

  • Jacob, R., J. Larson, and E. Ong, 2005: M × N communication and parallel interpolation in Community Climate System Model Version 3 using the model coupling toolkit. International Journal of High Performance Computing Applications, 19, 293–307.

    Article  Google Scholar 

  • Janssen, P. A. E. M., 1989: Wave-induced stress and the drag of airflow over sea waves. J. Phys. Oceanogr., 19, 745–754.

    Article  Google Scholar 

  • Janssen, P. A. E. M., 1991: Quasi-linear theory of windwave generation applied to wave forecasting. J. Phys. Oceanogr., 21, 1631–1642.

    Article  Google Scholar 

  • Janssen, P. A. E. M., 1994: Results with a coupled wind wave model. ECMWF Tech. Rep. No. 71, 58pp.

  • Janssen, P. A. E. M., and P. Viterbo, 1996: Ocean waves and the atmospheric climate. J. Climate, 9, 1296–1287.

    Article  Google Scholar 

  • Johnson, H. K., J. Hojstrup, H. J. Vested, and S. E. Larsen, 1998: On the Dependence of Sea Surface Roughness on Wind Waves. J. Phys. Oceanogr., 28, 1702–1716.

    Article  Google Scholar 

  • Jones, I. S. F., and Y. Toba, 2001: Wind Stress over the Ocean. Cambridge University Press, 307pp.

  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784–2802.

    Article  Google Scholar 

  • Kepert, J. D., C. W. Fairall, and J.-W. Bao, 1999: Modelling the Interaction between the Atmospheric Boundary Layer and Evaporating Sea Spray Droplets. Kluwer Academic Publishers, 363–409.

  • Lalbeharry, R., J. Mailhot, S. Desjardins, and L. Wilson, 2000: Examination of the impact of a coupled atmospheric and ocean wave system. Part II: Ocean wave aspects. J. Phys. Oceanogr., 30, 402–415.

    Article  Google Scholar 

  • Li, W., 2004: Modelling air-sea fluxes during a western Pacific typhoon: Role of sea spray. Adv. Atmos. Sci., 21, 269–276.

    Article  Google Scholar 

  • Lionello, P., P. Malguzzi, and A. Buzzi, 1998: On the coupling between the atmospheric circulation and the ocean wave field: An idealized case. J. Phys. Oceanogr., 28, 161–177.

    Article  Google Scholar 

  • Liu, B., 2007: Physical basis and numerical study of the coupled atmosphere-wave model. Ph.D. dissertation, Ocean University of China, 156pp.

  • Liu, B., C. Guan, and L. Xie, 2008: Investigating the impacts of wave state and sea spray on typhoon via a coupled atmosphere-wave system: The idealized case. 28th Conference on Hurricanes and Tropical Meteorology, Orlando, Florida, American Meteorological Society. [Available online at http://ams.confex.com/ams/pdfpapers/138367.pdf].

    Google Scholar 

  • Liu, B., H. Liu, L. Xie, C. Guan, and D. Zhao, 2011: A coupled atmosphere-wave-ocean modeling system: Simulation of the intensity of an idealized tropical cyclone. Mon. Wea. Rev., 139, 132–152.

    Article  Google Scholar 

  • Liu, H., and L. Xie, 2009: A numerical study on the effects of wave-current-surge interactions on the height and propagation of sea surface waves in Charleston Harbor during Hurricane Hugo 1989. Continental Shelf Research, 29, 1454–1463.

    Article  Google Scholar 

  • Makin, V. K., 2005: A note on the drag of the sea surface at hurricane winds. Bound.-Layer Meteor., 115, 169–176.

    Article  Google Scholar 

  • Mellor, G. L., and A. F. Blumberg, 1985: Modeling vertical and horizontal diffusivities with the sigma coordinate system. Mon. Wea. Rev., 113, 1379–1383.

    Article  Google Scholar 

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663–16682.

    Article  Google Scholar 

  • Monahan, E. C., 1986: The ocean as a source for atmospheric particles. The Role of Air-Sea Exchange in Geochemical Cycling, Buat-Menard, Ed., D. Reidel Publishing Company, Dordrecht, 129–163.

    Google Scholar 

  • Perrie, W., and Y. Zhang, 2001: A regional climate model coupled to ocean waves: Synoptic to multimonthly simulations. J. Geophys. Res., 106, 17753–17771.

    Article  Google Scholar 

  • Perrie, W., W. Zhang, X. Ren, Z. Long, E. L. Andreas, J. Gyakum, and R. McTaggart-Cowan, 2004: The role of waves, sea spray and the upper ocean in midlatitude storm development. Preprints, 26th Conference on Hurricanes and Tropical Meteorology of the American Meteorological Society, Miami, FL, 2pp.

  • Piazzola, J., P. Forget, and S. Despiau, 2002: A sea spray generation function for fetch-limited conditions. Ann. Geophys., 20, 121–131.

    Article  Google Scholar 

  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279–283.

    Article  Google Scholar 

  • Powers, J. G., and M. T. Stoelinga, 2000: A coupled airsea mesoscale model: Experiments in atmospheric sensitivity to marine roughness. Mon. Wea. Rev., 128, 208–228.

    Article  Google Scholar 

  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF Version 2. NCAR Technical Note NCAR/TN-468+STR, 88pp.

  • Smith, S. D., 1988: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93, 15467–15472.

    Article  Google Scholar 

  • Smith, S. D., and Coauthors, 1992: Sea surface wind stress and drag coefficients: The HEXOS results. Bound.-Layer Meteor., 60, 109–142.

    Article  Google Scholar 

  • Tenerelli, J. E., S. S. Chen, W. Zhao, and M. A. Donelan, 2001: High-resolution simulations of hurricane Floyd using MM5 coupled with a wave model. Workshop Program for the Eleventh PSU/NCAR MM5 Users’ Workshop, 4pp.

  • Toba, Y., N. Iida, H. Kawamura, N. Ebuchi, and I. S. F. Jones, 1990: The wave dependence of sea-surface wind stress. J. Phys. Oceanogr., 20, 705–721.

    Article  Google Scholar 

  • Wang, Y., J. D. Kepert, and G. J. Holland, 2001: The effect of sea spray evaporation on tropical cyclone boundary layer structure and intensity. Mon. Wea. Rev., 129, 2481–2500.

    Article  Google Scholar 

  • Weber, S. L., H. V. Storch, P. Viterbo, and L. Zambresky, 1993: Coupling an ocean wave model to an atmospheric general circulation model. Climate Dyn., 9, 53–61.

    Article  Google Scholar 

  • Weisse, R., and C. Schneggenburger, 2002: The effect of different sea state dependent roughness parameterizations on the sensitivity of the atmospheric circulation in a regional model. Mon. Wea. Rev., 130, 1595–1602.

    Article  Google Scholar 

  • Weisse, R., H. Heyen, and H. Von Storch, 2000: Sensitivity of a regional atmospheric model to a sea statedependent roughness and the need for ensemble calculations. Mon. Wea. Rev., 128, 3631–3642.

    Article  Google Scholar 

  • Wu, J., 1980: Wind-stress coefficients over sea surface near neutral conditions—A revisit. J. Phys. Oceanogr., 13, 1441–1451.

    Article  Google Scholar 

  • Xie, L., H. Liu, and M. Peng, 2008: The effect of wavecurrent interactions on the storm surge and inundation in Charleston Harbor during Hurricane Hugo 1989. Ocean Modelling, 20, 252–269.

    Article  Google Scholar 

  • Xie, L., K. Wu, L. Pietrafesa, and C. Zhang, 2001: A numerical study of wave-current interaction through surface and bottom stresses: Wind-driven circulation in the South Atlantic Bight under uniform winds. J. Geophys. Res., 106, 16841–16855.

    Article  Google Scholar 

  • Xie, L., B. Liu, H. Liu, and C. Guan, 2010: Numerical simulation of tropical cyclone intensity using an air-sea-wave coupled prediction system. Advances in Geosciences, 18 (OS), 19–43.

    Google Scholar 

  • Zhang, D.-L., and E. Altshuler, 1999: The effects of dissipative heating on hurricane intensity. Mon. Wea. Rev., 127, 3032–3038.

    Article  Google Scholar 

  • Zhang, W., W. Perrie, and W. Li, 2006: Impacts of waves and sea Sspray on midlatitude storm structure and intensity. Mon. Wea. Rev., 134, 2418–2442.

    Article  Google Scholar 

  • Zhao, D., and Y. Toba, 2001: Dependence of whitecap coverage on wind and wind-wave properties. J. Oceanogr., 57, 603–616.

    Article  Google Scholar 

  • Zhao, D., Y. Toba, K.-I. Sugioka, and S. Komori, 2006: New sea spray generation function for spume droplets. J. Geophys. Res., 111, C02007., doi: 02010.01029/02005JC002960.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changlong Guan  (管长龙).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, B., Guan, C., Xie, L. et al. An investigation of the effects of wave state and sea spray on an idealized typhoon using an air-sea coupled modeling system. Adv. Atmos. Sci. 29, 391–406 (2012). https://doi.org/10.1007/s00376-011-1059-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-011-1059-7

Key words

Navigation