Skip to main content
Log in

Formation of the summertime ozone valley over the Tibetan Plateau: The Asian summer monsoon and air column variations

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The summertime ozone valley over the Tibetan Plateau is formed by two influences, the Asian summer monsoon (ASM) and air column variations. Total ozone over the Tibetan Plateau in summer was ∼33 Dobson units (DU) lower than zonal mean values over the ocean at the same latitudes during the study period 2005–2009. Satellite observations of ozone profiles show that ozone concentrations over the ASM region have lower values in the upper troposphere and lower stratosphere (UTLS) than over the non-ASM region. This is caused by frequent convective transport of low-ozone air from the lower troposphere to the UTLS region combined with trapping by the South Asian High. This offset contributes to a ∼20-DU deficit in the ozone column over the ASM region. In addition, along the same latitude, total ozone changes identically with variations of the terrain height, showing a high correlation with terrain heights over the ASM region, which includes both the Tibetan and Iranian plateaus. This is confirmed by the fact that the Tibetan and Iranian plateaus have very similar vertical distributions of ozone in the UTLS, but they have different terrain heights and different total-column ozone levels. These two factors (lower UTLS ozone and higher terrain height) imply 40 DU in the lower-ozone column, but the Tibetan Plateau ozone column is only ∼33 DU lower than that over the non-ASM region. This fact suggests that the lower troposphere has higher ozone concentrations over the ASM region than elsewhere at the same latitude, contributing ∼7 DU of total ozone, which is consistent with ozonesonde and satellite observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Dessler, A. E., and S. C. Sherwood, 2004: Effect of convection on the summertime extratropical lower stratosphere. J. Geophys. Res., 109, D23301, doi: 10.1029/2004JD005209.

    Article  Google Scholar 

  • Fishman, J., J. K. Creilson, A. E. Wozniak, and P. J. Crutzen, 2005: Interannual variability of stratospheric and tropospheric ozone determined from satellite measurements. J. Geophys. Res., 110, D20306, doi: 10.1029/2005JD005868.

    Article  Google Scholar 

  • Froidevaux, L., and Coauthors, 2008: Validation of Aura Microwave Limb Sounder stratospheric ozone measurements. J. Geophys. Res., 113, D15S20, doi: 10.1029/2007JD008771.

    Article  Google Scholar 

  • Fu, R., and Coauthors, 2006: Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 103, 5664–5669.

    Article  Google Scholar 

  • Gettelman, A., D. E. Kinnison, T. J. Dunkerton, and G. P. Brasseur, 2004: Impact of monsoon circulations on the upper troposphere and lower stratosphere. J. Geophys. Res., 109, D22101, doi: 10.1029/2004JD004878.

    Article  Google Scholar 

  • Gille, J., and Coauthors, 2008: High Resolution Dynamics Limb Sounder: Experiment overview, recovery, and validation of initial temperature data. J. Geophys. Res., 113, D16S43, doi: 10.1029/2007JD008824.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77(3), 437–471.

    Article  Google Scholar 

  • Li, Q., and Coauthors, 2005: Trapping of Asian pollution by the Tibetan anticyclone: A global CTM simulation compared with EOS MLS observations. Geophys. Res. Lett., 32, L14826, doi: 10.1029/2005GL022762.

    Article  Google Scholar 

  • Liu, J. J., D. B. A. Jones, J. R. Worden, D. Noone, M. Parrington, and J. Kar, 2009: Analysis of the summertime buildup of tropospheric ozone abundances over the Middle East and North Africa as observed by the Tropospheric Emission Spectrometer instrument. J. Geophys. Res., 114, D05304, doi: 10.1029/2008JD010993.

    Article  Google Scholar 

  • Liu, Y., W. Li, X. Zhou, and J. He, 2003: Mechanism of formation of the ozone valley over the Tibetan plateau in summer-transport and chemical process of ozone. Adv. Atmos. Sci., 20, 103–109.

    Article  Google Scholar 

  • Livesey, N. J., and Coauthors, 2007: Version 2.2 Level 2 data quality and description document for EOS MLS, Jet Propul. Lab., Pasadena, Calif. [Available at http://mls.jpl.nasa.gov].

    Google Scholar 

  • Livesey, N. J., and Coauthors, 2008: Validation of Aura Microwave Limb Sounder O3 and CO observations in the upper troposphere and lower stratosphere. J. Geophys. Res., 113, D15S02, doi: 10.1029/2007JD008805.

    Article  Google Scholar 

  • McCormick, M. P., J. M. Zawodny, R.E. Viega, J. C. Larson, and P. H. Wang, 1989: An overview of SAGE I and II ozone measurements. Planet. Space Sci., 37, 1567–1586.

    Article  Google Scholar 

  • Nardi, B., and Coauthors, 2008: Initial validation of ozone measurements from the High Resolution Dynamics Limb Sounder. J. Geophys. Res., 113, D16S36, doi: 10.1029/2007JD008837.

    Article  Google Scholar 

  • Pan, L. L., W. J. Randel, B. L. Gary, M. J. Mahoney, and E. J. Hintsa, 2004: Definitions and sharpness of the extratropical tropopause: A trace gas perspective. J. Geophys. Res., 109, D23103, doi: 10.1029/2004JD004982.

    Article  Google Scholar 

  • Park, M., W. J. Randel, A. Gettelman, S. T. Massie, and J. H. Jiang, 2007: Transport above the Asian summer monsoon anticyclone inferred from Aura Microwave Limb Sounder tracers. J. Geophys. Res., 112, D16309, doi: 10.1029/2006JD008294.

    Article  Google Scholar 

  • Park, M., W. J. Randel, L. K. Emmons, P. F. Bernath, K. A. Walker, and C. D. Boone, 2008: Chemical isolation in the Asian monsoon anticyclone observed in Atmospheric Chemistry Experiment (ACE-FTS) data. Atmos. Chem. Phys., 8, 757–764.

    Article  Google Scholar 

  • Qiu, Y. Y., M. Wei, A. L. Jiang, and J. C. Tong, 2008: General characteristics of the total low center above the Tibetan plateau and (low) though above the Rocky mountains—one the cause of static deficit/depletion above the high mountains. Climatic and Environmental Research, 13(5), 617–628. (in Chinese)

    Google Scholar 

  • Randel, W. J., and M. Park, 2006: Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS). J. Geophys. Res., 111, D12314, doi: 10.1029/2005JD006490.

    Article  Google Scholar 

  • Randel, W. J., M. Park, L. Emmons, D. Kinnison, P. Bernath, K. Walker, C. Boone, and H. Pumphrey, 2010: Asian monsoon transport of pollution to the stratosphere. Science, 328, 611–613.

    Article  Google Scholar 

  • Schoeberl, M. R., and Coauthors, 2006: Overview of the EOS aura mission. IEEE Trans. Geosci. Remote Sens., 44(5), 1066–1074.

    Article  Google Scholar 

  • Tian, W., M. Chipperfield, and Q. Huang, 2008: Effects of the Tibetan Plateau on total column ozone distribution. Tellus, 60B, 622–635.

    Google Scholar 

  • Tobo, Y., Y. Iwasaka, D. Zhang, G. Shi, Y.-S. Kim, K. Tamura, and T. Ohashi, 2008: Summertime “ozone valley” over the Tibetan Plateau derived from ozonesondes and EP/TOMS data. Geophys. Res. Lett., 35, L16801, doi: 10.1029/2008GL034341.

    Article  Google Scholar 

  • Worden, J., and Coauthors, 2009: Observed vertical distribution of tropospheric ozone during the Asian summertime monsoon. J. Geophys. Res., 114, D13304, doi: 10.1029/2008JD010560.

    Article  Google Scholar 

  • Ye, Z., and Y. Xu, 2003: Climate characteristics of ozone over Tibetan Plateau. J. Geophys. Res., 108(D20), 4654, doi: 10.1029/2002JD003139.

    Article  Google Scholar 

  • Zheng, X., X. Zhou, J. Tang, Y. Qin, and C. Chan, 2004: A meteorological analysis on a low tropospheric ozone event over Xining, north western China on 26–27 July 1996. Atmos. Environ., 38, 261–271.

    Article  Google Scholar 

  • Zhou, R., and Y. Chen, 2005: Ozone variations over the Tibetan and Iranian Plateaus and their relationship with the South Asia High. Journal of University of Science and Technology of China, 35(6), 899–898. (in Chinese)

    Google Scholar 

  • Zhou, X., and C. Luo, 1994: Ozone valley over Tibetan Plateau. Acta Meteorologica Sinica, 8, 505–506.

    Google Scholar 

  • Zhou, X., and R. Zhang, 2005: Decadal variations of temperature and geopotential height over the Tibetan Plateau and their relations with Tibet ozone depletion. Geophys. Res. Lett., 32, L18705.

    Article  Google Scholar 

  • Zhou, X., W. Li, L. Chen, and Y. Liu, 2006: Study on ozone change over the Tibetan Plateau. Acta Meteorologica Sinica, 20(2), 129–143.

    Google Scholar 

  • Ziemke, J. R., S. Chandra, B. N. Duncan, L. Froidevaux, P. K. Bhartia, P. F. Levelt, and J. W. Waters, 2006: Tropospheric ozone determined from Aura OMI and MLS: Evaluation of measurements and comparison with the Global Modeling Initiative’s Chemical Transport Model. J. Geophys. Res., 111, D19303, doi: 10.1029/2006JD007089.

    Article  Google Scholar 

  • Zou, H., 1996: Seasonal variation and trends of TOMS ozone over Tibet. Geophys. Res. Lett., 23, 1029–1032.

    Article  Google Scholar 

  • Zou, H., and Y. Gao, 1997: Vertical ozone profile over Tibet using Sage I and II data. Adv. Atmos. Sci., 14(4), 505–512.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianchun Bian  (卞建春).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bian, J., Yan, R., Chen, H. et al. Formation of the summertime ozone valley over the Tibetan Plateau: The Asian summer monsoon and air column variations. Adv. Atmos. Sci. 28, 1318–1325 (2011). https://doi.org/10.1007/s00376-011-0174-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-011-0174-9

Key words

Navigation