Skip to main content
Log in

Response of a grassland ecosystem to climate change in a theoretical model

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The response of a grassland ecosystem to climate change is discussed within the context of a theoretical model. An optimization approach, a conditional nonlinear optimal perturbation related to parameter (CNOP-P) approach, was employed in this study. The CNOP-P, a perturbation of moisture index in the theoretical model, represents a nonlinear climate perturbation. Two kinds of linear climate perturbations were also used to study the response of the grassland ecosystem to different types of climate changes.

The results show that the extent of grassland ecosystem variation caused by the CNOP-P-type climate change is greater than that caused by the two linear types of climate change. In addition, the grassland ecosystem affected by the CNOP-P-type climate change evolved into a desert ecosystem, and the two linear types of climate changes failed within a specific amplitude range when the moisture index recovered to its reference state. Therefore, the grassland ecosystem response to climate change was nonlinear. This study yielded similar results for a desert ecosystem seeded with both living and wilted biomass litter. The quantitative analysis performed in this study also accounted for the role of soil moisture in the root zone and the shading effect of wilted biomass on the grassland ecosystem through nonlinear interactions between soil and vegetation. The results of this study imply that the CNOP-P approach is a potentially effective tool for assessing the impact of nonlinear climate change on grassland ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barclay, A., P. E. Gill, and J. B. Rosen, 1997: SQP methods and their application to numerical optimal control. Numerical Analysis Report 97-3, Department of Mathematics, University of California, San Diego, La Jolla, CA, 14pp.

    Google Scholar 

  • Claussen, M, C. Kubatzki, V. Brovkin, A. Ganopolski, P. Hoelzmann, and H. J. Pachur, 1999: Simulation of an Abrupt Change in Saharan Vegetation in the Mid-Holocene. Geophys. Res. Lett., 26(14), 2037–2040.

    Article  Google Scholar 

  • Dickinson, R. E., A. Henderson-Sellers, P. J. Kennedy, and M. F. Wilson, 1986: Biosphere-Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model. NCAR Technical Note NCAR/TN275+ STR, 69pp.

  • Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere-Atmosphere Transfer Scheme (BATS) version 1e as coupled to the NCAR Community Climate Model. NCAR Technical Note NCAR/TN-387+STR, 72pp.

  • Duan, W. S., M. Mu, and B. Wang, 2004: Conditional nonlinear optimal perturbation as the optimal precursors for El Niño-Southern Oscillation events. J. Geophys. Res., 109, D23105, doi: 10.1029/2004JD004756.

    Article  Google Scholar 

  • Duan, W. S., and M. Mu, 2006: Investigating decadal variability of El Niño Southern Oscillation asymmetry by conditional nonlinear optimal perturbation. J. Geophys. Res., 111, C07015, doi: 10.1029/2005JC003458.

    Article  Google Scholar 

  • Gao, X. J., Y. Luo, W. T. Lin, Z. C. Zhao, and G. Filippo, 2003: Simulation of Effects of Land Use Change on Climate in China by a Regional Climate Model. Adv. Atmos. Sci., 20(4), 583–592.

    Article  Google Scholar 

  • Hallgren, W. S., and A. J. Pitman, 2000: The uncertainty in simulations by a global biome model (BIOME3) to alternative parameter values. Global Change Biology, 6(5), 483–495.

    Article  Google Scholar 

  • Jia, B. R., G. S. Zhou, F. Y. Wang, Y. H. Wang, and E. S. Weng, 2007: Effects of Grazing on Soil Respiration of Leymus Chinensis Steppe. Climatic Change, 82, 211–223.

    Article  Google Scholar 

  • Klausmeier, C. A., 1999: Regular and irregular patterns in semiarid vegetation. Science, 284(5421), 1826–1828.

    Article  Google Scholar 

  • Liu, Z., M. Notaro, J. Kutzbach, and N. Liu, 2006a: Assessing Global Vegetation-Climate Feedbacks from Observations. J. Climate, 19, 787–814.

    Article  Google Scholar 

  • Liu, Z. Y., Y. Wang, R. Gallimore, M. Notaro, and I. C. Prentice, 2006b: On the cause of abrupt vegetation collapse in North Africa during the Holocene: Climate variability vs. vegetation feedback. Geophys. Res. Lett., 33, L22709, doi: 10.1029/2006GL028062.

    Article  Google Scholar 

  • Ma, Z. G., and C. Fu, 2001: Trend of surface humid index in the arid area of northern China. Acta Meteorologica Sinica, 59(6), 737–746. (in Chinese)

    Google Scholar 

  • Mitchell, S. W., and F. Csillag, 2001: Assessing the stability and uncertainty of predicted vegetation growth under climatic variability: Northern mixed grass prairie. Ecological Modelling, 139(2–3), 101–121.

    Article  Google Scholar 

  • Mu, M., and W. S. Duan, 2003: A new approach to studying ENSO predictability: Conditional nonlinear optimal perturbation. Chinese Science Bulletin, 48, 1045–1047.

    Google Scholar 

  • Mu, M., and B. Wang, 2007: Nonlinear instability and sensitivity of a theoretical grassland ecosystem to finite-amplitude perturbations. Nonlinear Processes in Geophysics, 14, 409–423.

    Article  Google Scholar 

  • Mu, M., and Z. N. Jiang, 2008: A new approach to the generation of initial perturbations for ensemble prediction: Conditional nonlinear optimal perturbation. Chinese Science Bulletin, 53(13), 2062–2068.

    Article  Google Scholar 

  • Mu, M., W. S. Duan, and B. Wang, 2003: Conditional nonlinear optimal perturbation and its applications. Nonlinear Processes in Geophysics, 10, 493–501.

    Article  Google Scholar 

  • Mu, M., L. Sun, and H. A. Dijikstra, 2004: The sensitivity and stability of the ocean’s thermohaline circulation to finite amplitude perturbations. Journal of Physical Oceanography, 34, 2305–2315.

    Article  Google Scholar 

  • Mu, M., W. S. Duan, and B. Wang, 2007a: Seasondependent dynamics of nonlinear optimal error growth and El Nino-Southern Oscillation predictability in a theoretical model. J. Geophys. Res., 112, D10113, doi: 10.1029/2005JD006981.

    Article  Google Scholar 

  • Mu, M., H. L. Wang, and F. F. Zhou, 2007b: A Preliminary application of conditional nonlinear optimal perturbation to adaptive observation. Chinese J. Atmos. Sci., 31(6), 1102–1112. (in Chinese)

    Google Scholar 

  • Mu, M., W. Duan, Q. Wang, and R. Zhang, 2010: An extension of conditional nonlinear optimal perturbation approach and its applications, Nonlinear Processes in Geophysics, 17, 211–220, doi: 10.5194/npg-17-211-2010.

    Article  Google Scholar 

  • Ni, J., 2004: Estimating grassland net primary productivity from field biomass measurements in temperate northern China. Plant Ecology, 174(2), 217–234.

    Article  Google Scholar 

  • Notaro, M., Z. Liu, and J. W. Williams, 2006: Observed Vegetation-Climate Feedbacks in the United States. J. Climate, 19, 763–786.

    Article  Google Scholar 

  • Piao, S. L., J. Y. Fang, L. Zhou, K. Tan, and S. Tao, 2007: Changes in biomass carbon stocks in China’s grasslands between 1982 and 1999. Global Biogeochemical Cycles, 21, GB2002, doi: 10.1029/2005GB002634.

    Article  Google Scholar 

  • Rosero, E., Z. L. Yang, T. Wagener, L. E. Gulden, S. Yatheendradas, and G.Y. Niu, 2010: Quantifying parameter sensitivity, interaction, and transferability in hydrologically enhanced versions of the Noah land surface model over transition zones during the warm season, J. Geophys. Res., 115, D03106, doi: 10.1029/2009JD012035.

    Article  Google Scholar 

  • Sherratt, J. A., and G. J. Lord, 2007: Nonlinear dynamics and pattern bifurcation in a model for vegetation stripes in semi-arid environments. Theoretical Population Biology, 71, 1–11.

    Article  Google Scholar 

  • Sitch, S., and Coauthors, 2003: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ Dynamic Vegetation Model. Global Change Biology, 9, 161–185.

    Article  Google Scholar 

  • Sun, L., M. Mu, D. J. Sun, and X. Y. Yin, 2005: Passive mechanism of decadal variation of thermohaline circulation. J. Geophys. Res., 110, C07025, doi: 10.1029/2005JC002897.

    Article  Google Scholar 

  • Sun, G. D., and M. Mu, 2009: Nonlinear feature of the abrupt transitions between multiple equilibria states of an ecosystem model. Adv. Atmos. Sci., 26(2), 293–304, doi: 10.1007/s00376-009-0293-8.

    Article  Google Scholar 

  • Woodward, F. I., 1987: Climate and Plant Distribution. Cambridge University Press, 174pp.

  • Woodward, F. I., M. R. Lomas, and C. K. Kelly, 2004: Global climate and the distribution of plant biomes. Philos. Trans. Roy. Soc. London, 359B, 1465–1476.

    Google Scholar 

  • Xue, Y. K., and J. Shukla, 1993: The influence of land surface properties on Sahel climate. Part I: desertification. J. Climate, 6, 2232–2245.

    Article  Google Scholar 

  • Xue, Y., 1996: The Impact of Desertification in the Mongolian and the Inner Mongolian Grassland on the Regional Climate. J. Climate, 9, 2173–2189.

    Article  Google Scholar 

  • Zeng, N., and J. D. Neelin, 2000: The role of vegetation-climate interaction and interannual variability in shaping the African Savanna. J. Climate, 13, 2665–2670.

    Article  Google Scholar 

  • Zeng, N., K. Hales, and J. D. Neelin, 2002: Nonlinear dynamics in a coupled vegetation-atmosphere system and implications for desert-forest gradient. J. Climate, 15, 3474–3487.

    Article  Google Scholar 

  • Zeng, X. D., S. S. P. Shen, X. B. Zeng, and R. E. Dickinson, 2004: Multiple equilibrium states and the abrupt transitions in a dynamical system of soil water interacting with vegetation. Geophys. Res. Lett., 31, 5501, doi: 10.1029/2003GL018910.

    Article  Google Scholar 

  • Zeng, X. D., X. B. Zeng, S. S. P. Shen, R. E. Dickinson, and Q. C. Zeng, 2005: Vegetation-soil water interaction within a dynamical ecosystem model of grassland in semi-arid areas. Tellus, 57B, 189–202.

    Google Scholar 

  • Zeng, X. D., A. H. Wang, Q. C. Zeng, R. E. Dickinson, X. B. Zeng, and S. S. P. Shen, 2006: Intermediately complex models for the hydrological interactions in the atmosphere-vegetation-soil system. Adv. Atmos. Sci., 23(1), 127–140.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Sun  (孙国栋).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, G., Mu, M. Response of a grassland ecosystem to climate change in a theoretical model. Adv. Atmos. Sci. 28, 1266–1278 (2011). https://doi.org/10.1007/s00376-011-0169-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-011-0169-6

Key words

Navigation