Skip to main content
Log in

Radiative forcing and climate response due to black carbon in snow and ice

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 18 April 2012

Abstract

The radiative forcing and climate response due to black carbon (BC) in snow and/or ice were investigated by integrating observed effects of BC on snow/ice albedo into an atmospheric general circulation model (BCC_AGCM2.0.1) developed by the National Climate Center (NCC) of the China Meteorological Administration (CMA). The results show that the global annual mean surface radiative forcing due to BC in snow/ice is +0.042 W m−2, with maximum forcing found over the Tibetan Plateau and regional mean forcing exceeding +2.8 W m−2. The global annual mean surface temperature increased 0.071°C due to BC in snow/ice. Positive surface radiative forcing was clearly shown in winter and spring and increased the surface temperature of snow/ice in the Northern Hemisphere. The surface temperatures of snow-covered areas of Eurasia and North America in winter (spring) increased by 0.83°C (0.6°C) and 0.83°C (0.46°C), respectively. Snowmelt rates also increased greatly, leading to earlier snowmelt and peak runoff times. With the rise of surface temperatures in the Arctic, more water vapor could be released into the atmosphere, allowing easier cloud formation, which could lead to higher thermal emittance in the Arctic. However, the total cloud forcing could decrease due to increasing cloud cover, which will offset some of the positive feedback mechanism of the clouds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnett, T. P., J. C. Adam, and D. P. Lettenmaier, 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303–309.

    Article  Google Scholar 

  • Bond, T. C., D. G. Streets, K. F. Yarber, S. M. Nelson, J.-H. Woo, and Z. Klimont, 2004: A technologybased global inventory of black and organic carbon emissions from combustion. J. Geophys. Res., 109, D14203, doi:10.1029/2003JD003697.

    Article  Google Scholar 

  • Briegleb, B. P., 1992: Delta-Eddington approximation for solar radiation in the NCAR Community Climate Model. J. Geophys. Res., 97, 7603–7612.

    Article  Google Scholar 

  • Collins, W. D., P. J. Rasch, B. E. Eaton, B. V. Khattatov, J.-F. Lamarque, and C. S. Zender, 2001: Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX. J. Geophys. Res., 106, 7313–7336.

    Article  Google Scholar 

  • Collins, W. D., P. J. Rasch, B. E. Eaton, D. W. Fillmore, J. T. Kiehl, C. T. Beck, and C. S. Zender, 2002: Simulation of aerosol distributions and radiative forcing for INDOEX: Regional climate impacts. J. Geophys. Res., 107, doi:10.1029/2001JD001365.

  • Flanner, M. G., C. S. Zender, P. G. Hess, N. M. Mahowald, T. H. Painter, V. Ramanathan, and P. J. Rasch, 2009: Springtime warming and reduced snow cover from carbonaceous particles. Atmos. Chem. Phys., 9, 2481–2497.

    Article  Google Scholar 

  • Flanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch, 2007: Present-day climate forcing and response from lack carbon in snow. J. Geophys. Res., 112, D11202, doi: 10.1029/2006JD008003.

    Article  Google Scholar 

  • Garrett, T. J., and C. Zhao, 2006: Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nature, 440, 787–789.

    Article  Google Scholar 

  • Grenfell, T. C., B. Light, and M. Sturm, 2002: Spatial distribution and radiative effects of soot in the snow and sea ice during the SHEBA experiment. J. Geophys. Res., 107(10), 8032, doi:10.1029/2000JC000414.

    Article  Google Scholar 

  • Hansen, J., and L. Nazarenko, 2004: Soot climate forcing via snow and ice albedos. Proc. Natl. Acad. Sci., 101(2), 423–428.

    Article  Google Scholar 

  • Hansen, J., and Coauthors, 2007: Climate simulations for 1880-2003 with GISS modelE. Climate Dyn., 29, 661–696, doi: 10.1007/s00382-007-0255-8.

    Article  Google Scholar 

  • Harrison, E. F., P. Minnis, B. R. Barkstrom, V. Ramanathan, R. D. Cess, and G. G. Gibson, 1990: Seasonal variation of cloud radiative forcing derived from the earth radiation budget experiment. J. Geophys. Res., 95, 18687–18703.

    Article  Google Scholar 

  • IPCC, 2001: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Houghton et al., Eds., Cambridge University Press, Cambridge, 881pp.

    Google Scholar 

  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon et al., Eds., Cambridge University Press, Cambridge, 131–217.

    Google Scholar 

  • Jacobson, M. Z., 2004: Climate response of fossil fuel and biofuel soot, accounting for soot’s feedback to snow and sea ice albedo and emissivity. J. Geophys. Res., 109, D21201, doi:10.1029/2004JD004945.

    Article  Google Scholar 

  • Kistler, R., and Coauthors, 2001: The NCEP-NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247–267.

    Article  Google Scholar 

  • Koch, D., S. Menon, A. D. Genio, R. Ruedy, I. Alienov, and G. A. Schmidt, 2009: Distinguishing aerosol impacts on climate over the past century. J. Climate, 22, 2659–2677.

    Article  Google Scholar 

  • Light, B., H. Eicken, G. A. Maykut, and T. C. Grenfell, 1998: The effect of included particulates on the spectral albedo of sea ice. J. Geophys. Res., 103, 27739–27752.

    Article  Google Scholar 

  • Ming, J., H. Cachier, C. Xiao, D. Qin, S. Kang, S. Hou, and J. Xu, 2008: Black carbon record based on a shallow Himalayan ice core and its climatic implications. Atmos. Chem. Phys., 8, 1343–1352.

    Article  Google Scholar 

  • Ming, J., C. Xiao, H. Cachier, D. Qin, X. Qin, Z. Li, and J. Pu, 2009: Black Carbon (BC) in the snow of glaciers in west China and its potential effects on albedos. Atmospheric Research, 92, 114–123.

    Article  Google Scholar 

  • Noone, K. J., and A. D. Clarke, 1988: Soot scavenging measurements in Arctic snowfall. Atmos. Environ., 22, 2773–2778.

    Article  Google Scholar 

  • Oleson, K. W., and Coauthors, 2004: Technical description of the community land model (CLM). Tech. Rep. NCAR/TN-461+STR, 174pp.

  • Rasch, P. J., N. W. Mahowald, and B. E. Eaton, 1997: Representations of transport, convection, and the hydrologic cycle in chemical transport models: Implications for the modeling of short lived and soluble species. J. Geophys. Res., 102, 28127–28138.

    Article  Google Scholar 

  • Rypdal, K., N. Rive, T. K. Berntsen, Z. Klimont, T. K. Mideksa, G. Myhre, and R. B. Skeie, 2009: Costs and global impacts of black carbon abatement strategies. Tellus, 61B, 625–641.

    Google Scholar 

  • Streets, D. G., and Coauthors, 2003: An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res., 108(D21), 8809, doi:10.1029/2002JD003093.

    Article  Google Scholar 

  • Thompson, L. G., E. M. Thompson, M. E. Davis, P.-N. Lin, K. Henderson, and T. A. Mashiotta, 2003: Tropical glacier and ice core evidence of climate changes on annual to millenial time scales. Climatic Change, 59, 137–155.

    Article  Google Scholar 

  • Wang, Z. L., H. Zhang, X. S. Shen, S. L. Gong, and X. Y. Zhang, 2010: A modeling study of aerosol indirect effects on global climate with an AGCM. Adv. Atmos. Sci., 27(5), 1064–1077, doi: 10.1007/s00376-010-9120-5.

    Article  Google Scholar 

  • Wang, Z. L., P. W. Guo, and H. Zhang, 2009: The numerical study of direct radiative forcing due to black carbon and its effects on the summer precipitation in China. Climatic and Environmental Research, 14(2), 161–171. (in Chinese)

    Google Scholar 

  • Warren, S., 1982: Optical properties of snow. Rev. Geophys., 20, 67–89.

    Article  Google Scholar 

  • Warren, S., and W. Wiscombe, 1980: A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. J. Atmos. Sci., 37, 2734–2745.

    Article  Google Scholar 

  • Wu, T., and G. Wu, 2004: An empirical formula to compute snow cover fraction in GCMs. Adv. Atmos. Sci., 21, 529–535.

    Article  Google Scholar 

  • Wu, T., and Coauthors, 2010: The Beijing Climate Center atmospheric general circulation model: Description and its performance for the present-day. Climate Dyn., 34, 123–147, doi: 10.1007/s00382-008-0487-2.

    Article  Google Scholar 

  • Xiao, C., and Coauthors, 2007: Observed changes of cryosphere in China over the second half of the 20th century: An overview. Annals of Glaciology, 46, 382–390.

    Article  Google Scholar 

  • Xu, B., T. Yao, X. Liu, and N. Wang, 2006: Elemental and organic carbon measurements with a two-step heating-gas chromatography system in snow samples from the Tibetan Plateau. Annals of Glaciology, 43, 257–262.

    Article  Google Scholar 

  • Yan, H., 1987: Design of a nested fine-mesh model over the complex topograph, Part two: parameterization of the subgrid physical processes. Plateau Meteorology, 6(Suppl.), 64–139. (in Chinese)

    Google Scholar 

  • Zhang, G. J., and M. Mu, 2005: Effects of modifications to the Zhang-McFarlane convection parameterization on the simulation of the tropical precipitation in the National Center for Atmospheric Research Community Climate Model, version 3. J. Geophys. Res., 110, D09109, doi:10.1029/2004JD005617.

    Article  Google Scholar 

  • Zhang, H., Z. L. Wang, P. W. Guo, and Z. Z. Wang, 2009: A modeling study of the effects of direct radiative forcing due to carbonaceous aerosol on the climate in East Asia. Adv. Atmos. Sci., 26(1), 57–66, doi: 10.1007/s00376-009-0057-5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhang  (张华).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Zhang, H. & Shen, X. Radiative forcing and climate response due to black carbon in snow and ice. Adv. Atmos. Sci. 28, 1336–1344 (2011). https://doi.org/10.1007/s00376-011-0117-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-011-0117-5

Key words

Navigation