Skip to main content

The role of changes in the annual cycle in earlier onset of climatic spring in northern China

Abstract

Climatic changes in the onset of spring in northern China associated with changes in the annual cycle and with a recent warming trend were quantified using a recently developed adaptive data analysis tool, the Ensemble Empirical Mode Decomposition. The study was based on a homogenized daily surface air temperature (SAT) dataset for the period 1955–2003. The annual cycle here is referred to as a refined modulated annual cycle (MAC). The results show that spring at Beijing has arrived significantly earlier by about 2.98 d (10 yr)−1, of which about 1.85 d (10 yr)−1 is due to changes in the annual cycle and 1.13 d (10 yr)−1 due to the long-term warming trend. Variations in the MAC component explain about 92.5% of the total variance in the Beijing daily SAT series and could cause as much as a 20-day shift in the onset of spring from one year to another. The onset of spring has been advancing all over northern China, but more significant in the east than in the west part of the region. These differences are somehow unexplainable by the zonal pattern of the warming trend over the whole region, but can be explained by opposite changes in the spring phase of the MAC, i.e. advancing in the east while delaying in the west. In the east of northern China, the change in the spring phase of MAC explains 40%–60% of the spring onset trend and is attributable to a weakening Asian winter monsoon. The average sea level pressure in Siberia (55°–80°N, 50°–110°E), an index of the strength of the winter monsoon, could serve as a potential short-term predictor for the onset of spring in the east of northern China.

This is a preview of subscription content, access via your institution.

References

  • Aasa, A., J. Jaagus, R. Ahas, and M. Sepp, 2004: The influence of atmospheric circulation on plant phenological phases in central and eastern Europe. International Journal of Climatology, 24, 1551–1564.

    Article  Google Scholar 

  • Ahas, R., A. Aasa, A. Menzel, V. G. Fedotova, and H. Scheifinger, 2002: Changes in European spring phenology. International Journal of Climatology, 22, 1727–1738.

    Article  Google Scholar 

  • Bonsal, B. R., and T. D. Prowse, 2003: Trends and variability in spring and autumn 0°C-isotherm dates over Canada. Climatic Change, 57, 341–358.

    Article  Google Scholar 

  • Chen, X., B. Hu, and R. Yu, 2005: Spatial and temporal variation of phenological growing season and climate change impacts in temperate eastern China. Global Change Biology, 11, 1118–1130.

    Article  Google Scholar 

  • Christidis, N., P. A. Stott, S. Brown, D. J. Karoly, and J. Caesar, 2007: Human contribution to the lengthening of the growing season during 1950–99. J. Climate, 20, 5441–5454.

    Article  Google Scholar 

  • de Beurs, K. M., and G. M. Henebry, 2008: Northern annular mode effects on the land surface phenologies of Northern Eurasia. J. Climate, 21, 4257–4279.

    Article  Google Scholar 

  • D’Odorico, P., J. Yoo, and S. Jaeger, 2002: Changing seasons: An effect of the North Atlantic Oscillation? J. Climate, 15(4), 435–445.

    Article  Google Scholar 

  • Eliseev, A. V., and I. I. Mokhov, 2003: Amplitude-phase characteristics of annual cycle of surface air temperature in Northern Hemisphere. Adv. Atmos. Sci., 20, 1–16.

    Google Scholar 

  • Flandrin, P., G. Rilling, and P. Gonçalvès, 2004: Empirical mode decomposition as a filter bank. IEEE Signal Processing Letters, 11, 112–114.

    Article  Google Scholar 

  • Frich, P., L. V. Alexander, P. Della-Marta, B. Gleason, M. Haylock, A. M. G. Klein Tank, and T. Peterson, 2002: Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research, 19, 193–212.

    Article  Google Scholar 

  • Ghil, M., and Coauthors, 2002: Advanced spectral methods for climatic time series. Rev. Geophys., 40(1), 1–41, doi: 10.1029/2001RG000092.

    Article  Google Scholar 

  • Han, C., J. Zheng, and Q. Ge, 2007: Phenological changes in spring in last 40 years in North China. Chinese Journal of Agrometeorology, 28(2), 113–117. (in Chinese)

    Google Scholar 

  • Hu, Z.-Z., L. Bengtsson, and K. Arpe, 2000: Impact of global warming on the Asian winter monsoon in a coupled GCM. J. Geophys. Res., 105(D4), 4607–4624.

    Article  Google Scholar 

  • Huang, N. E., and S. S. P. Shen, 2005: Hilbert-Huang Transform: Introduction and Applications. World Scientific, Singapore, 311pp.

    Google Scholar 

  • Huang, N. E., and Z. Wu, 2008: A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Rev. Geophys., 46, RG2006, doi: 10.1029/2007RG000228.

    Article  Google Scholar 

  • Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, E. H. Shih, Q. Zheng, C. C. Tung, and H. H. Liu, 1998: The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. Roy. Soc. London, 454, 903–995.

    Article  Google Scholar 

  • Huang, N. E., Z. Shen, and S. R. Long, 1999: A new view of nonlinear water waves: The Hilbert spectrum. Annual Review of Fluid Mechanics, 31, 417–457.

    Article  Google Scholar 

  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996pp.

    Google Scholar 

  • Jaagus, J., J. Truu, R. Ahas, and A. Aasa, 2003: Spa tial and temporal variability of climatic seasons on the East European Plain in relation to large-scale atmospheric circulation. Climate Research, 23(2), 111–129.

    Article  Google Scholar 

  • Jones, P. D., D. H. Lister, and Q. Li, 2008: Urbanization effects in large-scale temperature records, with an emphasis on China. J. Geophys. Res., 113, D16122, doi: 10.1029/2008JD009916.

    Article  Google Scholar 

  • Jones, P. D., K. R. Briffa, T. J. Osborn, A. Moberg, and H. Bergström, 2002: Relationships between circulation strength and the variability of growing-season and cold-season climate in northern and central Europe. The Holocene, 12, 643–656.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Karlsen, S. R., I. Solheim, P. S. A. Beck, K. A. Høgda, F. E. Wielgolaski, and H. Tømmervik, 2007: Variability of the start of the growing season in Fennoscandia, 1982-2002. International Journal of Biometeorology, 51, 513–524.

    Article  Google Scholar 

  • Kistler, R., E. Kalny, and W. Collins, 2001: The NCEPNCAR 50-year reanalysis; Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82(2), 247–267.

    Article  Google Scholar 

  • Li, Z., and Z. Yan, 2010: Application of multiple analysis of series for homogenization to Beijing daily temperature series 1960–2006. Adv. Atmos. Sci., 27, 777–787, doi: 10.1007/s00376-009-9052-0.

    Article  Google Scholar 

  • Li, Q., H. Zhang, J. Chen, W. Li, X. Liu, and P. D. Jones, 2009: A mainland China homogenized historical temperature dataset of 1951–2004. Bull. Amer. Meteor. Soc., 90, 1062–1065.

    Article  Google Scholar 

  • Linderholm, H. W., 2006: Growing season changes in the last century. Agricultural and Forest Meteorology, 137, 1–14.

    Article  Google Scholar 

  • Linderholm, H. W., A. Walther, and D. Chen, 2008: Twentieth-century trends in the thermal growing season in the Greater Baltic Area. Climatic Change, 87, 405–419.

    Article  Google Scholar 

  • Mann, M. E., and J. Park, 1996: Greenhouse warming and changes in the seasonal cycle of temperature: Model versus observations. Geophys. Res. Lett., 23, 1111–1114.

    Article  Google Scholar 

  • McCarty, J. P., 2001: Ecological consequence of recent climate change. Conservation Biology, 15(2), 320–331.

    Article  Google Scholar 

  • Menzel, A., 2000: Trends in phenological phases in Europe between 1951 and 1996. International Journal of Biometeorology, 44(2), 76–81.

    Article  Google Scholar 

  • Menzel, A., and P. Fabian, 1999: Growing season extended in Europe. Nature, 397, 659.

    Article  Google Scholar 

  • Mokhov, I. I., and A. V. Eliseev, 1997: Tropospheric and stratospheric temperature annual cycle: Tendencies of change. Izvestiya, Atmospheric and Oceanics Physics, 33, 415–426.

    Google Scholar 

  • Paluš, M., D. Novotná, and P. Tichavský, 2005: Shifts of seasons at the European mid-latitudes: Natural fluctuations correlated with the North Atlantic Oscillation. Geophys. Res. Lett., 32, L12805, doi: 10.1029/2005GL022838.

    Article  Google Scholar 

  • Qian, C., C. Fu, Z. Wu, and Z. Yan, 2009: On the secular change of spring onset at Stockholm. Geophys. Res. Lett., 36, L12706, doi: 10.1029/2009GL038617.

    Article  Google Scholar 

  • Qian, C., Z. Wu, C. B. Fu, and T. J. Zhou, 2010: On multi-timescale variability of temperature in China in modulated annual cycle reference frame. Adv. Atmos. Sci, 27(5), 1169–1182, doi: 10.1007/s00376-009-9121-4.

    Article  Google Scholar 

  • Ren, G. Y., and Coauthors, 2005: Recent progresses in studies of regional temperature changes in China. Climatic and Environmental Research, 10(4), 701–716. (in Chinese)

    Google Scholar 

  • Ren, G. Y., Z. Y. Chu, Z. H. Chen, and Y. Y. Ren, 2007: Implications of temporal change in urban heat island intensity observed at Beijing and Wuhan stations. Geophys. Res. Lett., 34, L05711, doi: 10.1029/2006GL027927.

    Article  Google Scholar 

  • Ren, G. Y., Y. Zhou, Z. Chu, J. Zhou, A. Zhang, J. Guo, and X. Liu, 2008: Urbanization effects on observed surface air temperature trends in North China. J. Climate, 21, 1333–1348.

    Article  Google Scholar 

  • Scheifinger, H., A. Menzel, E. Koch, and C. Peter, 2002: Atmospheric mechanisms governing the spatial and temporal variability of phenological phases in Central Europe. Int. J. Climatol., 22(14), 1739–1755.

    Article  Google Scholar 

  • Schwartz, M. D., R. Ahas, and A. Aasa, 2006: Onset of spring starting earlier across the Northern Hemisphere. Global Change Biology, 12(2), 343–351.

    Article  Google Scholar 

  • Shi, X. H., X. D. Xu, and L. A. Xie, 2007: Interdecadal spatial-temporal change trend of East Asian Winter Monsoon in the last 40 years. Chinese J. Atmos. Sci., 31(4), 747–756. (in Chinese)

    Google Scholar 

  • Song, Y., H. W. Linderholm, D. Chen, and A. Walther, 2010: Trends of the thermal growing season in China, 1951-2007. Int. J. Climatol., 30, 33–43.

    Google Scholar 

  • Sparks, T. H., and A. Menzel, 2002: Observed changes in seasons: An overview. Int. J. Climatol., 22(14), 1715–1725.

    Article  Google Scholar 

  • Stine, A. R., P. Huybers, and I. Y. Fung, 2009: Changes in the phase of the annual cycle of surface temperature. Nature, 457, 435–440.

    Article  Google Scholar 

  • Thomson, D. J., 1995: The seasons, global temperature and precession. Science, 268, 59–68.

    Article  Google Scholar 

  • Tesouro, M., L. Gimeno, R. Nieto, L. Dela Torre, P. Ribera, D. Gallego, R. García-Herrera, and E. Hernández, 2005: Interannual variability of the annual cycle of temperature over Northern Africa. Studia Geophysica et Geodaetica, 49, 141–151.

    Article  Google Scholar 

  • Wallace, C. J., and T. J. Osborn, 2002: Recent and future modulation of the annual cycle. Climate Research, 22, 1–11.

    Article  Google Scholar 

  • Walther, A., and H. W. Linderholm, 2006: A comparison of growing season indices for the Greater Baltic Area. International Journal of Biometeorology, 51, 107–118.

    Article  Google Scholar 

  • Wang, L., R. Huang, L. Gu, W. Chen, and L. Kang, 2009: Interdecadal variations of the East Asian winter monsoon and their association with quasi-stationary planetary wave activity. J. Climate, 22(18), 4860–4872.

    Article  Google Scholar 

  • Wu, Z., and N. E. Huang, 2004: A study of the characteristics of white noise using the empirical mode decomposition method. Proc. Roy. Soc. London, 460, 1597–611.

    Article  Google Scholar 

  • Wu, Z., and N. E. Huang, 2009: Ensemble Empirical Mode Decomposition: A noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1(1), 1–41.

    Article  Google Scholar 

  • Wu, Z., N. E. Huang, S. R. Long, and C.-K, Peng, 2007: On the trend, detrending, and variability of nonlinear and nonstationary time series. Proceedings of the National Academy of Sciences, USA, 104(38), 14889–14894.

    Article  Google Scholar 

  • Wu, Z., E. K. Schneider, B. P. Kirtman, E. S. Sarachik, N. E. Huang, and C. J. Tucker, 2008: The modulated annual cycle: An alternative reference frame for climate anomalies. Climate Dyn., 31, 823–841. doi: 10.1007/s00382-008-0437-z.

    Article  Google Scholar 

  • Xu, M. Z., and G. Y. Ren, 2004: Change in climatic growth period over China: 1961-2000. Journal of Applied Meteorological Science, 15(3), 306–312. (in Chinese)

    Google Scholar 

  • Yan, Z. W., and C. Yang, 2000: Geographical patterns of extreme climate changes in China during 1951–1997. Climatic and Environmental Research, 5(3), 267–372. (in Chinese)

    Google Scholar 

  • Yan, Z., P. D. Jones, A. Moberg, H. Bergstrom, T. D. Davies, and C. Yang, 2001: Recent trends in weather and seasonal cycles: an analysis of daily data from Europe and China. J. Geophys. Res., 106(D6), 5123–5138.

    Article  Google Scholar 

  • Yan, Z., Z. Li, Q. Li, and P. Jones, 2010: Effects of site change and urbanisation in the Beijing temperature series 1977–2006. Int. J. Climatol., doi: 10.1002/joc.1971.

  • Zheng, J., Q. Ge, Z. Hao, and W.-C. Wang, 2006: Spring phenophases in recent decades over Eastern China and its possible link to climate changes. Climatic Change, 77, 449–462, doi: 10.1007/s10584-005-9038-6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohua Wu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Qian, C., Fu, C., Wu, Z. et al. The role of changes in the annual cycle in earlier onset of climatic spring in northern China. Adv. Atmos. Sci. 28, 284–296 (2011). https://doi.org/10.1007/s00376-010-9221-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-010-9221-1

Key words

  • spring onset
  • Ensemble Empirical Mode Decomposition
  • modulated annual cycle
  • Asian winter monsoon
  • global warming