Advances in Atmospheric Sciences

, Volume 28, Issue 1, pp 80–98 | Cite as

Water vapor and cloud radiative forcings over the Pacific Ocean simulated by the LASG/IAP AGCM: Sensitivity to convection schemes

  • Chunqiang Wu (吴春强)
  • Tianjun Zhou (周天军)
  • De-Zheng Sun (孙德征)
  • Qing Bao (包 庆)


Characteristics of the total clear-sky greenhouse effect (GA) and cloud radiative forcings (CRFs), along with the radiative-related water vapor and cloud properties simulated by the Spectral Atmospheric Model developed by LASG/IAP (SAMIL) are evaluated. Impacts of the convection scheme on the simulation of CRFs are discussed by using two AMIP (Atmospheric Model Inter-comparison Project) type simulations employing different convection schemes: the new Zhang-McFarlane (NZH) and Tiedtke (TDK) convection schemes. It shows that both the climatological GA and its response to El Niño warming are simulated well, both in terms of spatial pattern and magnitude. The impact of the convection scheme on GA is not significant. The climatological longwave CRF (LWCRF) and its response to El Niño warming are simulated well, but with a prominently weaker magnitude. The simulation of the climatology (response) of LWCRF in the NZH (TDK) run is slightly more realistic than in the TDK (NZH) simulation, indicating significant impacts of the convection scheme. The shortwave CRF (SWCRF) shows large biases in both spatial pattern and magnitude, and the results from the TDK run are better than those from the NZH run. A spuriously excessive negative climatological SWCRF over the southeastern Pacific and an insufficient response of SWCRF to El Niño warming over the tropical Pacific are seen in the NZH run. These two biases are alleviated in the TDK run, since it produces vigorous convection, which is related to the low threshold for convection to take place. Also, impacts of the convection scheme on the cloud profile are discussed.

Key words

SAMIL convection scheme cloud radiative forcing greenhouse effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17, 2493–2525.CrossRefGoogle Scholar
  2. Bao, Q., G. Wu, Y. Liu, J. Yang, Z. Wang, and T. Zhou, 2010: An introduction to the coupled model FGOALS1.1-s and its performance in East Asia. Adv. Atmos. Sci., 27, doi: 10.1007/s00376-010-9177-1.Google Scholar
  3. Bony, S., and J. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, doi: 10.1029/2005GL023851.Google Scholar
  4. Cess, R. D., and Coauthors, 1990: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res., 95, 16601–16615.CrossRefGoogle Scholar
  5. Cess, R. D., and Coauthors, 1996: Cloud feedback in atmospheric general circulation models: An update. J. Geophys. Res., 101, 12791–12794.CrossRefGoogle Scholar
  6. Charlock, T. P., and V. Ramanathan, 1985: The Albedo field and cloud radiative forcing produced by a general circulation model with internally generated cloud optics. J. Atmos. Sci., 42, 1408–1429.CrossRefGoogle Scholar
  7. Chen, H., T. Zhou, R. Yu, and Q. Bao, 2009: The East Asian summer monsoon simulated by coupled model FGOALS_s. Chinese J. Atmos. Sci., 33(1), 155–167. (in Chinese)Google Scholar
  8. Chen, H., T. Zhou, R. B. Neale, X. Wu, and G. J. Zhang, 2010: Performance of the New NCAR CAM3.5 in East Asian summer monsoon simulations: sensitivity to modifications of the convection scheme. J. Climate, 23, 3657–3675.CrossRefGoogle Scholar
  9. Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 2122–2143.CrossRefGoogle Scholar
  10. Colman, R., 2003: A comparison of climate feedbacks in general circulation models. Climate Dyn., 20, 865–873.Google Scholar
  11. Cusack, S., A. Slingo, J. M. Edwards, and M. Wild, 1998: The radiative impact of simple aerosol climatology on the Hadley Centre climate model. Quart. J. Roy. Meteor. Soc., 124, 2517–2526.Google Scholar
  12. Dai, F., R. Yu, X. Zhang, and Y. Yu, 2005: A statistically-based low-level cloud scheme and its tentative application in a general circulation model. Acta Meteoro logica Sinica, 19, 263–274.Google Scholar
  13. Del Genio, A., and W. Kovari, 2002: Climatic properties of tropical precipitating convection under varying environmental conditions. J. Climate, 15, 2597–2615.CrossRefGoogle Scholar
  14. Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiationcode. I: choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689–719.CrossRefGoogle Scholar
  15. Emanuel, K. A., and M. Zivkovic-Rothman, 1999: Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci., 56, 1766–1782.CrossRefGoogle Scholar
  16. Guilyardi, E., P. Braconnot, F. Jin, S. T. Kim, M. Kolasinski, T. Li, and I. Musat, 2009: Atmosphere feedbacks during ENSO in a coupled GCM with a modified atmospheric convection scheme. J. Climate, 22, 5698–5718.CrossRefGoogle Scholar
  17. Hack, J. J., 1994: Parameterization of moist convection in the National Center for Atmospheric Research community climate model (CCM2). J. Geophys. Res., 99, 5551–5568.CrossRefGoogle Scholar
  18. Haladay, T., and G. Stephens, 2009: Characteristics of tropical thin cirrus clouds deduced from joint Cloud-Sat and CALIPSO observations. J. Geophys. Res., 114, doi: 10.1029/2008JD010675.Google Scholar
  19. Hall, A., and S. Manabe, 1999: The role of water vapor feedback in unperturbed climate variability and global warming. J. Climate, 12, 2327–2346.CrossRefGoogle Scholar
  20. Hansen, J., and Coauthors, 2002: Climate forcings in Goddard Institute for Space Studies SI2000 simulations, J. Geophys. Res., 107(D18), doi: 10.1029/2001JD001143.Google Scholar
  21. Hodson, D. L. R., R. T. Sutton, C. Cassou, N. Keenlyside, Y. Okumura, and T. Zhou, 2010: Climate impacts of recent multidecadal changes in Atlantic Ocean sea surface temperature: A multimodel comparison. Climate Dyn., 34, 1041–1058, doi: 10.1007/s00382-009-0571-2.CrossRefGoogle Scholar
  22. Holtslag, A. A., and C. H. Moeng, 1991: Eddy diffusivity and counter gradient transport in the convective atmospheric boundary layer. J. Atmos. Sci., 48, 1690–1698.CrossRefGoogle Scholar
  23. Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, 2001: Climate change 2001: The Scientific Basis. Cambridge University Press Cambridge, 892pp.Google Scholar
  24. Hourdin, F., and Coauthors, 2006: The LMDZ4 general circulation model: Climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Climate Dyn., 27, 787–813.CrossRefGoogle Scholar
  25. Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 1587–1606.CrossRefGoogle Scholar
  26. Kucharski, F., and Coauthors, 2009: The CLIVAR C20C project: Skill of simulating Indian monsoon rainfall on interannual to decadal timescales. Does GHG forcing play a role? Climate Dyn., 33, 615–627, doi:10.1007/s00382-008-0462-y.CrossRefGoogle Scholar
  27. Li, L., B. Wang, and T. Zhou, 2007, Contributions of natural and anthropogenic forcings to the summer cooling over eastern China: An AGCM study. Geophys. Res. Lett., 34, L18807, doi: 10.1029/2007GL030541CrossRefGoogle Scholar
  28. Li, J., Y. Liu, Z. Sun, and G. Wu, 2009: The impacts of the radiation and cumulus convective parameterization on the radiation fluxes in SAMIL. Acta Meteorologica Sinica, 67(03), 355–369. (in Chinese)CrossRefGoogle Scholar
  29. Li, G., and G. J. Zhang, 2008: Understanding biases in shortwave cloud radiative forcing in the national center for atmospheric research community atmosphere model (CAM3) during El Niño. J. Geophys. Res., 113, doi: 10.1029/2007JD008963.Google Scholar
  30. Li, H., L. Feng, and T. Zhou, 2010a: Multi-model projection of July–August climate extreme changes over China under CO2 doubling. Part I: Precipitation. Adv. Atmos. Sci., doi: 10.1007/s00376-010-0013-4.Google Scholar
  31. Li, H., L. Feng, and T. Zhou, 2010b: Multi-model projection of July–August climate extreme changes over China under CO2 doubling. Part II: Temperature. Adv. Atmos. Sci., doi: 10.1007/s00376-010-0052-x.Google Scholar
  32. Liu, Y. M., K. Liu, and G. X. Wu, 2007: The impacts of the cumulus convective parameterization on the atmospheric water-content and rainfall simulation in SAMIL. Chinese J. Atmos. Sci., 31, 1201–1211. (in Chinese)Google Scholar
  33. Lloyd, J., E. Guilyardi, H. Weller, and J. Slingo, 2009: The role of atmosphere feedbacks during ENSO in the CMIP3 models. Atmos. Sci. Lett., 10, 170–176.CrossRefGoogle Scholar
  34. Maloney, E. D., and D. L. Hartmann, 2001: The sensitivity of intraseasonal variability in the NCAR CCM3 to changes in convective parameterization. J. Climate, 14, 2015–2034.CrossRefGoogle Scholar
  35. Nordeng, T. E., 1994: Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Technical Memorandum, 206, 41pp.Google Scholar
  36. Ockert-Bell, M. E., and D. L. Hartmann, 1992a: The effect of cloud type on earth energy balance: Results for selected regions. J. Climate, 5, 1157–1171.CrossRefGoogle Scholar
  37. Ockert-Bell, M. E., and D. L. Hartmann, 1992b: The effect of cloud type on earth-energy balance: Results for selected regions. J. Climate, 5, 1157–1171.CrossRefGoogle Scholar
  38. Press, W. H., S.A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992: Numerical Recipes. Cambridge University Press, 963pp.Google Scholar
  39. Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, Solomon et al., Eds., Cambridge University Press, 589–662.Google Scholar
  40. Raval, A., and V. Ramanathan, 1989: Observational determination of the greenhouse-effect. Nature, 342, 758–761.CrossRefGoogle Scholar
  41. Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80(11), 2261–2287.CrossRefGoogle Scholar
  42. Rossow, W. B., and E. N. Duenas, 2004: The International Satellite Cloud Climatology Project (ISCCP) Web site—An online resource for research. Bull. Amer. Meteor. Soc., 85, 167–172.CrossRefGoogle Scholar
  43. Sanchez-Gomez, E., C. Cassou, D. L. R. Hodson, N. Keenlyside, Y. Okumura, and T. Zhou, 2008: North Atlantic weather regimes response to Indian-western Pacific Ocean warming: A multi-model study. Geophys. Res. Lett., 35, L15706, doi:10.1029/2008GL034345.CrossRefGoogle Scholar
  44. Scaife, A. A., Coauthors, 2009: The CLIVAR C20C Project: Selected twentieth century climate events. Climate Dyn., 33, 603–614, doi: 10.1007/s00382-008-0451-1.CrossRefGoogle Scholar
  45. Schmidt, G. A., and Coauthors, 2006: Present-day atmospheric simulations using GISS ModelE: Comparison to in situ, satellite, and reanalysis data. J. Climate, 19, 153–192.CrossRefGoogle Scholar
  46. Shi, G. Y., 2007: Atmospheric Radiation Science. Science and Technology Press, 402pp. (in Chinese)Google Scholar
  47. Shine, K. P., and A. Sinha, 1991: Sensitivity of the Earth’s climate to height-dependent changes in the water vapour mixing ratio. Nature, 354, 382–384.CrossRefGoogle Scholar
  48. Slingo, J. M., 1987: The development and verification of a cloud prediction scheme for the ECMWF model. Quart. J. Roy. Meteor. Soc., 113, 899–927.CrossRefGoogle Scholar
  49. Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17, 2466–2477.CrossRefGoogle Scholar
  50. Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean-atmosphere models. J. Climate, 19, 3354–3360.CrossRefGoogle Scholar
  51. Song, X. L., 2005: The evaluation analysis of two kinds of mass flux cumulus parameterization in climate simulation. Ph. D. dissertaion, Institute of Atmospheric Physics, Chinese Academy of Sciences, 145pp. (in Chinese)Google Scholar
  52. Song, X., X. Wu, G. J. Zhang, and R. W. Arritt, 2008: Understanding the effects of convective momentum transport on climate simulations: The role of convective heating. J. Climate, 21, 5034–5047.CrossRefGoogle Scholar
  53. Sun, D. Z., and R. S. Lindzen, 1993: Wator vapor feedback and the ice age snowline record. Ann. Geophys., 11, 204–215.Google Scholar
  54. Sun, D. Z., J. Fasullo, T. Zhang, and A. Roubicek, 2003: On the radiative and dynamical feedbacks over the equatorial Pacific cold tongue. J. Climate, 16, 2425–2432.CrossRefGoogle Scholar
  55. Sun, D. Z., and Coauthors, 2006: Radiative and dynamical feedbacks over the equatorial cold tongue: Results from nine atmospheric GCMs. J. Climate, 19, 4059–4074.CrossRefGoogle Scholar
  56. Sun, Z., 2005: Parameterizations of radiation and cloud optical properties. BMRC Research Report, 1–6.Google Scholar
  57. Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large scale models. Mon. Wea. Rev., 117, 1779–1800.CrossRefGoogle Scholar
  58. Uppala, S., 2006: From ERA-15 to ERA-40 and ERA-Interim. ECMWF-GEO Workshop on Atmospheric Reanalysis, Reading, United Kingdom, ECMWF, 17–22.Google Scholar
  59. Wang, J., W. B. Rossow, and Y. C. Zhang, 2000: Cloud vertical structure and its variations from 20-yr global rawinsonde dataset. J. Climate, 12, 3041–3056.CrossRefGoogle Scholar
  60. Weare, B. C., and A. M. Groups, 1996: Evaluation of the vertical structure of zonally averaged cloudiness and its variability in the atmospheric model intercomparison project. J. Climate, 9, 3419–3431.CrossRefGoogle Scholar
  61. Wen, X., T. Zhou, S. Wang, B. Wang, H. Wan, and J. Li, 2007: Performance of a reconfigured Atmospheric General Circulation Model at low resolution. Adv. Atmos. Sci., 24(4), 712–728.CrossRefGoogle Scholar
  62. Wylie, D. P., and W. P. Menzel, 1999: Eight years of high cloud statistics using HIRS. J. Climate, 12(1), 170–184.Google Scholar
  63. Wu, C. Q., and T. J. Zhou, 2010: The cloud radiative forcing characteristics over East Asia simulated by the CFMIP Atmospheric General Circulation models. Acta Meteorological Sinica, in press. (in Chinese)Google Scholar
  64. Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78(11), 2539–2558.CrossRefGoogle Scholar
  65. Xu, K. M., and D. A. Randall, 1996: A semiempirical cloudiness parameterization for use in climate models. J. Atmos. Sci., 53(21), 3084–3102.CrossRefGoogle Scholar
  66. Yu, Y., and Coauthors, 2008: Coupled model simulations of climate changes in the 20th century and beyond. Adv. Atmos. Sci, 25(4), 641–654.CrossRefGoogle Scholar
  67. Zhang, G. J., 2002: Convective quasi-equilibrium in mid-latitude continental environment and its effect on convective parameterization. J. Geophys. Res., 107, doi: 10.1029/2001JD001005.Google Scholar
  68. Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.-Ocean, 33, 407–446.Google Scholar
  69. Zhang, J., T. Zhou, Q. Bao, and B. Wu, 2010a: The vertical structures of temperature anomalies associated with El Niño simulated by LASG/IAP AGCM: Sensitivity to convection schemes. Adv. Atmos. Sci., 27, 1051–1063, doi: 10.1007/s00376-010-9167-3.CrossRefGoogle Scholar
  70. Zhang, L., T. Zhou, B. Wu, and Q. Bao, 2010b: The annual modes of tropical precipitation simulated by the LASG/IAP coupled ocean-atmosphere model FGOALS_s1.1. Acta Meteor. Sinica, 24, 189–202.CrossRefGoogle Scholar
  71. Zhang, M. H., W. Y. Lin, S. A. Klein, J. T. Bacmeister, S. Bony, R. T. Cederwall, and A. D. D. Genio, 2005: Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J. Geophys. Res., 110, doi: 10.1029/2004JD005021.Google Scholar
  72. Zhang, T., and D. Z. Sun, 2006: Response of water vapor and clouds to El Niño warming in three NCAR models. J. Geophys. Res., 111, doi:10.1029/2005JD006700.Google Scholar
  73. Zhang, T., and D. Sun, 2008: What causes the excessive response of clear-sky greenhouse effect to El Niño warming in NCAR Community Atmosphere Models? J. Geophys. Res., 113, doi: 10.1029/2007JD009247.Google Scholar
  74. Zhang, Y., W. B. Rossow, A. A. Lacis, V. Oinasm, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, doi: 1029/2003JD004457.Google Scholar
  75. Zhou, T., and Z. Li, 2002: Simulation of the east Asian summer monsoon by using a variable resolution atmospheric GCM. Climate Dynamics, 19, 167–180CrossRefGoogle Scholar
  76. Zhou, T., and R. Yu, 2006: Twentieth century surface air temperature over China and the globe simulated by coupled climate models. J. Climate, 19, 5843–5858.CrossRefGoogle Scholar
  77. Zhou, T., R. Yu, X. Liu, Y. Guo, Y. Yu, and X. Zhang, 2005a: Weak response of the Atlantic thermohaline circulation to an increase of atmospheric carbon dioxide in IAP/LASG Climate System Model. Chinese Science Bulletin, 50(6), 592–598.Google Scholar
  78. Zhou, T., R. Yu, Z. Z. Wang, and T. W. Wu, 2005b: The Atmospheric General Circulation Model SAMIL and Its Associated Coupled Climate System Model FGOALS-s. Vol. 4, Impacts of the Ocaen-Land-Atmosphere Interaction over the Asian Monsoon Domain on the Climate Change over China, China Meteorological Press, 288pp. (in Chinese)Google Scholar
  79. Zhou, T., Y. Yu, H. Liu, W. Li, X. You, and G. Zhou, 2007: Progress in the development and application of climate ocean models and ocean-atmosphere coupled models in China. Adv. Atmos. Sci., 24(4), 729–738.CrossRefGoogle Scholar
  80. Zhou, T., B. Wu, X. Wen, L. Li, and B. Wang, 2008: A fast version of LASG/IAP climate system model and its 1000-year control integration. Adv. Atmos. Sci., 25(4), 655–672, doi: 10.1007/s00376-008-0655-7.30.CrossRefGoogle Scholar
  81. Zhou, T., B. Wu, and B. Wang, 2009a: How well do Atmospheric General Circulation Models capture the leading modes of the interannual variability of Asian-Australian Monsoon? J. Climate, 22, 1159–1173.CrossRefGoogle Scholar
  82. Zhou, T., and Coauthors, 2009b: Why the western pacific subtropical high has extended westward since the late 1970s. J. Climate, 22, 2199–2215.CrossRefGoogle Scholar
  83. Zhou, T., and Coauthors, 2009c: The CLIVAR C20C Project: Which components of the Asian-Australian Monsoon circulation variations are forced and reproducible? Climate Dyn., 33, 1051–1068, doi: 10.1007/s00382-008-0501-8.CrossRefGoogle Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Chunqiang Wu (吴春强)
    • 1
    • 2
  • Tianjun Zhou (周天军)
    • 1
  • De-Zheng Sun (孙德征)
    • 3
  • Qing Bao (包 庆)
    • 1
  1. 1.The State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.National Satellite Meteorological CenterChina Meteorological AdministrationBeijingChina
  3. 3.Cooperative Institute for Environmental Studies/University of Colorado & Earth System Research Laboratory/NOAABoulderUSA

Personalised recommendations