Skip to main content
Log in

Mesoscale barotropic instability of vortex Rossby waves in tropical cyclones

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

In this study, the barotropic stability of vortex Rossby waves (VRWs) in 2D inviscid tropical cyclone (TC)-like vortices is explored in the context of rotational dynamics on an f-plane. Two necessary instable conditions are discovered: (a) there must be at least one zero point of basic vorticity gradient in the radial scope; and (b) the relative propagation velocity of perturbations must be negative to the basic vorticity gradient, which reflects the restriction relationship of instable energy. The maximum growth rate of instable waves depends on the peak radial gradient of the mean vorticity and the tangential wavenumber (WN). The vortex-semicircle theorem is also derived to provide bounds on the growth rates and phase speeds of VRWs.

The typical basic states and different WN perturbations in a tropical cyclone (TC) are obtained from a high resolution simulation. It is shown that the first necessary condition for vortex barotropic instability can be easily met at the radius of maximum vorticity (RMV). The wave energy tends to decay (grow) inside (outside) the RMV due mainly to the negative (positive) sign of the radial gradient of the mean absolute vorticity. This finding appears to help explain the developemnt of strong vortices in the eyewall of TCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthes, R. A., 1982: Tropical Cyclones: Their Evolution, Structure and Effect. Amer. Meteor. Soc., Boston, MA, USA, 208pp.

    Google Scholar 

  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 135–163.

    Google Scholar 

  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 33–52.

    Google Scholar 

  • Eliassen, A., 1952: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophysica Norvegica, 5, 19–60.

    Google Scholar 

  • Emanuel, K. A., 1995: The behavior of a simple hurricane model using a convective scheme based on subcloudlayer entropy equilibrium. J. Atmos. Sci., 52, 3960–3968.

    Article  Google Scholar 

  • Frederiksen, J. S., 1979: The effects of long planetary waves on the regional cyclogenesis. J. Atmos. Sci., 36, 195–204.

    Article  Google Scholar 

  • Kuo, H. L., and B. C. Zhu, 1981: Atmospheric Dynamics. Chinese Science and Technology Press of Jiangsu, Jiangsu, China, 48pp. (in Chinese)

    Google Scholar 

  • Liu, Y., D.-L. Zhang, and M. K. Yau, 1997: A multiscale numerical study of hurricane Andrew (1992). Part I: Explicit simulation and verification. Mon. Wea. Rev., 125, 3073–3093.

    Article  Google Scholar 

  • Liu, Y., D.-L. Zhang, and M. K. Yau, 1999: A multiscale numerical study of hurricane Andrew (1992). Part II: Kinematics and inner-core structures. Mon. Wea. Rev., 127, 2597–2616.

    Article  Google Scholar 

  • Llewellyn Smith, S. G., 1995: The influence of circulation on the stability of vortices to mode-one disturbances. Proc. Roy. Soc. London A, 451, 747–755.

    Article  Google Scholar 

  • Macdonald, N. J., 1968: The evidence for the existence of Rossby-like waves in the hurricane vortex. Tellus, 20, 138–150.

    Article  Google Scholar 

  • Montgmery, M. T., and R. J. Kallenbach, 1997: A theory of vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435–465.

    Article  Google Scholar 

  • Montgomery, M. T., and J. Enagonio, 1998: Tropical cyclogenesis via convectively forced vortex Rossby waves in a three-dimensional quasigeostrophic model. J. Atmos. Sci., 55, 3176–3207.

    Article  Google Scholar 

  • Montgomery, M. T., and J. L. Franklin, 1998: An assessment of the balance approximation in hurricanes. J. Atmos. Sci., 55, 2193–2200.

    Article  Google Scholar 

  • Nolan, D. S., and M. T. Montgomery, 2000: The algebraic growth of wavenumber one disturbances in hurricanelike vortices. J. Atmos. Sci., 57, 3514–3538.

    Article  Google Scholar 

  • Nolan, D. S., and M. T. Montgomery, 2002: Nonhydrostatic three-dimensional perturbations to balanced hurricane-like vortices. Part I: Linearized formulation, stability, and evolution. J. Atmos. Sci., 59, 2989–3020.

    Article  Google Scholar 

  • Reasor, P. D., M. T. Montgomery, F. D. Marks Jr., and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne Dual-Doppler radar. Mon. Wea. Rev., 128, 1653–1680.

    Article  Google Scholar 

  • Rezink, G. M., and W. K. Dewar, 1994: An analytical theory of distributed axisymmetric barotropic vortices on the beta-plane. J. Fluid Mech., 269, 301–321.

    Article  Google Scholar 

  • Schecter, D. A., and M. T. Montgomery, 2007: Waves in a cloudy vortex. J. Atmos. Sci., 64, 314–337.

    Article  Google Scholar 

  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 1197–1223.

    Article  Google Scholar 

  • Smith, R. A., and M. N. Rosenbluth, 1990: Algebraic instability of hollow electron columns and cylindrical vortices. Physical Review Letters, 64, 649–652.

    Article  Google Scholar 

  • Tepper, M. A., 1958: A theoretical model for hurricane radar bands. Preprints, 7th Conf. on Radar Meteorology, Boston, MA, USA, Amer. Meteor. Soc., K56–K65.

    Google Scholar 

  • Wang, Y., 2002a: Vortex Rossby waves in a numerically simulated tropical cyclone. Part I: Overall structure, potential vorticity, and kinetic energy budgets. J. Atmos. Sci., 59, 1213–1238.

    Article  Google Scholar 

  • Wang, Y., 2002b: Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59, 1239–1262.

    Article  Google Scholar 

  • Willoughby, H. E., 1978a: A possible mechanism for the formation of hurricane rain bands. J. Atmos. Sci., 35, 838–848.

    Article  Google Scholar 

  • Willoughby, H. E., 1978b: The vertical structure of hurricane rainbands and their interaction with the mean vortex. J. Atmos. Sci., 35, 849–858.

    Article  Google Scholar 

  • Xu, Q., 1982: The unstable spiral inertia-gravity waves in Typhoon. Chinese Science (B), 12, 665–673. (in Chinese)

    Google Scholar 

  • Zhang, D.-L., Y. Liu, and M. K. Yau, 2000: A multiscale numerical study of Hurricane Andrew (1992). Part III: Dynamically induced vertical motion. Mon. Wea. Rev., 128, 3772–3788.

    Article  Google Scholar 

  • Zhang, D.-L., Y. Liu, and M. K. Yau, 2001: A multiscale numerical study of Hurricane Andrew (1992). Part IV: Unbalanced flows. Mon. Wea. Rev., 129, 92–1107.

    Article  Google Scholar 

  • Zhang, D.-L., Y. Liu, and M. K. Yau, 2002: A multiscale numerical study of Hurricane Andrew (1992). Part V: Inner-core thermodynamics. Mon. Wea. Rev., 130, 2745–2763.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhong  (钟 玮).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, W., Lu, HC. & Zhang, DL. Mesoscale barotropic instability of vortex Rossby waves in tropical cyclones. Adv. Atmos. Sci. 27, 243–252 (2010). https://doi.org/10.1007/s00376-009-8183-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-009-8183-7

Key words

Navigation