Skip to main content
Log in

High resolution global modeling of the atmospheric circulation

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

An informal review is presented of recent developments in numerical simulation of the global atmospheric circulation with very fine numerical resolution models. The focus is on results obtained recently with versions of the GFDL SKYHI model and the Atmospheric Model for the Earth Simulator (AFES) global atmospheric models. These models have been run with effective horizontal grid resolution of ∼10–40 km and fine vertical resolution. The results presented demonstrate the utility of such models for the study of a diverse range of phenomena. Specifically the models are shown to simulate the development of tropical cyclones with peak winds and minimum central pressures comparable to those of the most intense hurricanes actually observed. More fundamentally, the spectrum of energy content in the mesoscale in the flow can be reproduced by these models down to near the smallest explicitly-resolved horizontal scales. In the middle atmosphere it is shown that increasing horizontal resolution can lead to significantly improved overall simulation of the global-scale circulation. The application of the models to two specific problems requiring very fine resolution global will be discussed. The spatial and temporal variability of the vertical eddy flux of zonal momentum associated with gravity waves near the tropopause is evaluated in the very fine resolution AFES model. This is a subject of great importance for understanding and modelling the flow in the middle atmosphere. Then the simulation of the small scale variations of the semidiurnal surface pressure oscillation is analyzed, and the signature of significant topographic modulation of the semidiurnal atmospheric tide is identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, D. G., J. D. Mahlman, and R. W. Sinclair, 1983: Eliassen-Palm diagnostics of wave-mean flow interaction in the GFDL “SKYHI” general circulation model, J. Atmos. Sci., 40, 2768–2784.

    Article  Google Scholar 

  • Bengtsson, L., M. Botzet, and M. Esh, 1995: Simulations of hurricane-type vortices in a general circulation model. Tellus, 47A, 175–196.

    Google Scholar 

  • Boer, G. J. and M. Lazare 1988: Some results concerning the effect of horizontal resolution and gravity-wave drag on simulated climate. J. Climate, 1, 789–806.

    Article  Google Scholar 

  • Boer, G. J. and T. G. Shepherd, 1983: Large-scale two-dimensional turbulence in the atmosphere. J. Atmos. Sci., 40, 164–184.

    Article  Google Scholar 

  • Boville, B. A., 1991: Sensitivity of simulated climate to model resolution. J. Climate, 4, 469–485.

    Article  Google Scholar 

  • Boyle, J. S., 1993: Sensitivity of dynamical quantities to horizontal resolution for a climate simulation using the ECMWF (cycle 33) model. J. Climate, 6, 796–815.

    Article  Google Scholar 

  • Broccoli, A., and S. Manabe, 1990: Can existing climate models be used to study anthropogenic changes in tropical cyclone climate? Geophys. Res. Lett., 17, 1917–1920.

    Google Scholar 

  • Chapman, S., and R. S. Lindzen, 1970: Atmospheric Tides. Gordon and Breach Publishers, 200pp.

  • Conaty, A. L., J. C. Jusem, L. Takacs, D. Keyser, and R. Atlas, 2001: The structure and evolution of extratropical cyclones, fronts, jet streams, and the tropopause in the GEOS General Circulation Model. Bull. Amer. Meteor. Soc., 82, 1853–1867.

    Article  Google Scholar 

  • Dai, A., and J. Wang, 1999: Diurnal and semidiurnal tides in global surface pressure fields. J. Atmos. Sci., 56, 3874–3891.

    Article  Google Scholar 

  • Dunnavan, G. M., and J. W. Dierks, 1980: An analysis of Supertyphoon Tip (October 1979). Mon. Wen. Rev., 108, 1915–1923.

    Article  Google Scholar 

  • Fels, S. B., J. D. Mahlman, M. D. Schwarzkopf, and R. W. Sinclair. 1980: Stratospheric sensitivity to perturbations in ozone and carbon dioxide: Radiative and dynamical response. J. Atmos. Sci., 37, 2265–2297.

    Article  Google Scholar 

  • Frank, W. M., 1977: The structure and energetics of the tropical cyclone II. Dynamics and Energetics. Mon. Wea. Rev., 105, 1136–1150.

    Article  Google Scholar 

  • Garcia, R. R., and B. A. Boville, 1994: “Downward control” of the mean meridional circulation and temperature distribution of the polar winter stratosphere. J. Atmos. Sci., 51, 2238–2245.

    Article  Google Scholar 

  • Hamilton, K., 1996: Comprehensive meteorological modelling of the middle atmosphere: A tutorial review. J. Atmos. Terrestrial Phys., 58, 1591–1628.

    Article  Google Scholar 

  • Hamilton, K., 2006: Numerical resolution and modeling of the global atmospheric circulation: A review of our current understanding and outstanding issues. High Resolution Numerical Modelling of the Atmosphere and Ocean, W. Ohfuchi and K. Hamilton, Eds., Springer Publishing, (in press)

  • Hamilton, K., and J. D. Mahlman, 1988: General circulation model simulation of the semiannual oscillation in the tropical middle atmosphere. J. Atmos. Sci., 45, 3212–3235.

    Article  Google Scholar 

  • Hamilton, K., and R. S. Hemler, 1997: Appearance of a super-typhoon in a global climate model simulation. Bull. Amer. Meteor. Soc., 78, 2874–2876.

    Google Scholar 

  • Hamilton, K., R. J. Wilson, J. D. Mahlman, and L. J. Umscheid, 1995: Climatology of the SKYHI tropospherestratosphere-mesosphere General Circulation Model. J. Atmos. Sci., 52, 5–13.

    Article  Google Scholar 

  • Hamilton, K., R. J. Wilson, and R. S. Hemler, 1999: Middle atmosphere simulated with high vertical and horizontal resolution versions of a GCM: Improvement in the cold pole bias and generation of a QBO-like oscillation in the tropics. J. Atmos. Sci., 56, 3829–3846.

    Article  Google Scholar 

  • Hamilton, K., R. J. Wilson, and R. S. Hemler, 2001: Spontaneous stratospheric QBO-like oscillations simulated by the GFDL SKYHI General Circulation Model. J. Atmos. Sci., 58, 3271–3292.

    Article  Google Scholar 

  • Haurwitz, B., 1956: The geographical distribution of the solar semi-diurnal pressure oscillation. New York Univ. Coll. Eng. Meteor. Pap., 2(5), 1–36.

    Google Scholar 

  • Inness, P. M., J. M. Slingo, S. J. Woolnough, R. B. Neale, and V. D. Pope, 2001: Organization of tropical convection in a GCM with varying vertical resolution; implications for the simulation of the Madden-Julian Oscillation. Climate Dyn., 17, 777–793.

    Article  Google Scholar 

  • Kang, I.-S., and Coauthors, 2002: Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs. Climate Dyn., 19, 383–395.

    Article  Google Scholar 

  • Koshyk, J. N., and K. Hamilton, 2001: The horizontal kinetic energy spectrum and spectral budget simulated by a high-resolution troposphere-stratospheremesosphere GCM. J. Atmos. Sci., 58, 329–348.

    Article  Google Scholar 

  • Koshyk, J. N., B. A. Boville, K. Hamilton, E. Manzini, and K. Shibata, 1999: The kinetic energy spectrum of horizontal motions in middle atmosphere models. J. Geophys. Res., 104, 27177–27190.

    Article  Google Scholar 

  • Levy, H., J. D. Mahlman, and W. J. Moxim, 1982: Tropospheric N2O variability. J. Geophys. Res., 87, 3061–3080.

    Google Scholar 

  • Lindborg, E., 1999: Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech., 388, 259–288.

    Article  Google Scholar 

  • Mahlman, J. D., and L. J. Umscheid, 1987: Comprehensive modeling of the middle atmosphere: The influence of horizontal resolution. Transport Processes in the Middle Atmosphere, G. Visconti and R. Garcia, Eds., D. Reidel Publishing, 251–266.

  • Manabe, S., J. Smagorinsky, and R. F. Strickler, 1965: Simulated climatology of a general circulation model with a hydrologic cycle. Mon. Wea. Rev., 93, 769–798.

    Google Scholar 

  • Milliff, R. F., J. Morzel, D. B. Chelton, and M. H. Freilich, 2004: Wind stress curl and wind stress divergence biases from rain effects on QSCAT surface wind retrievals. J. Atmos. Oceanic Technol., 21, 1216–1231.

    Article  Google Scholar 

  • Miyahara, S., Y. Hayashi, and J. D. Mahlman, 1986: Interactions between gravity waves and planetary-scale flow simulated by the GFDL “SKYHI” general circulation model. J. Atmos. Sci., 43, 1844–1861.

    Article  Google Scholar 

  • Mizuta, R., T. Uchiyama, K. Kamiguchi, A. Kitoh, and A. Noda, 2005: Changes in extremes indices over Japan due to global warming projected by a global 20-km-mesh atmospheric model. SOLA, 1, 153–156.

    Article  Google Scholar 

  • Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950–960.

    Article  Google Scholar 

  • Naujokat, B., 1986: An update of the observed Quasi-Biennial Oscillation of the stratospheric winds over the tropics. J. Atmos. Sci., 43, 1873–1877.

    Article  Google Scholar 

  • Ohfuchi, W., and Coauthors, 2001: 10-km mesh meso-scale resolving simulations of the global atmosphere on the Earth Simulator—Preliminary outcomes of AFES (AGCM for the Earth Simulator). J. Earth Simulator, 1, 8–34.

    Google Scholar 

  • Ohfuchi, W., H. Sasaki, Y. Masumoto, and H. Nakamura, 2005: Mesoscale-resolving simulations of the global atmosphere and ocean on the Earth Simulator. Eos, 86, 45–46.

    Google Scholar 

  • Palmer, T. N., 2001: A nonlinear dynamical perspective on model error: A proposal for non-local stochasticdynamic parameterization in weather and climate prediction models. Quart. J. Roy. Meteor. Soc., 127, 279–304.

    Article  Google Scholar 

  • Pope, V., and R. Stratton, 2002: The processes governing horizontal resolution sensitivity in a climate model. Climate Dyn., 19, 211–236.

    Article  Google Scholar 

  • Randel, W., and Coauthors, 2004: The SPARC intercomparison of middle atmosphere climatologies. J. Climate, 17, 986–1003.

    Article  Google Scholar 

  • Sato, K., T. Kumakura, and M. Takahashi, 1999: Gravity waves appearing in a high-resolution GCM simulation. J. Atmos. Sci., 56, 1005–1018.

    Article  Google Scholar 

  • Shen, B.-W., R. Atlas, J.-D. Chern, O. Reale, S.-J. Lin, T. Lee, and J. Chang, 2006: The 0.125 degree finite-volume general circulation model on the NASA Columbia supercomputer: Preliminary simulations of mesoscale vortices, Geophys. Res. Lett., 33, doi:10.1029/2005GL024594.

  • Sobel, A. H., and S. J. Camargo, 2005: Influence of western North Pacific tropical cyclones on their large-scale environment. J. Atmos. Sci., 62, 3396–3407.

    Article  Google Scholar 

  • Spar, J., 1952: Characteristics of the semidiurnal pressure waves in the United States. Bull. Amer. Meteor. Soc., 33, 438–441.

    Google Scholar 

  • Sugi, M., A. Noda, and N. Sato, 2002: Influence of global warming on tropical cyclone climatology: An experiment with the JMA global model. J. Meteor. Soc. Japan, 80, 249–272.

    Article  Google Scholar 

  • Tokioka, T., and I. Yagai, 1987: Atmospheric tides appearing in a global atmospheric GCM. J. Meteor. Soc. Japan, 65, 423–438.

    Google Scholar 

  • Tomita, H., H. Miura, S. Iga, T. Nasuno, and M. Satoh, 2005: A global cloud-resolving simulation: Preliminary results from an aqua-planet experiment. Geophys. Res. Lett., 32, L08805, doi:10.1029/2005GL022459.

    Article  Google Scholar 

  • Tsutsui, J., 2002: Implications of anthropogenic climate change for tropcial cyclone activity. A case study with the NCAR CCM2. J. Meteor. Soc. Japan, 80, 45–65.

    Article  Google Scholar 

  • Yu Rucong, Li Wei, Zhang Xuehong, Liu Yimin, Yu Yongqiang, Liu Hailong, and Zhou Tianjun, 2000: Climatic features related to eastern China summer rainfalls in the NCAR CCM3. Adv. Atmos. Sci., 17, 503–518.

    Google Scholar 

  • Zhou, T. J., and Z. X. Li, 2002: Simulation of the east Asian summer monsoon by using a variable resolution atmospheric GCM. Climate Dyn., 19, 167–180.

    Article  Google Scholar 

  • Zwiers, F., and K. Hamilton, 1986: The simulation of atmospheric tides in the Canadian Climate Centre GCM. J. Geophys. Res., 91, 11877–11898.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamilton, K. High resolution global modeling of the atmospheric circulation. Adv. Atmos. Sci. 23, 842–856 (2006). https://doi.org/10.1007/s00376-006-0842-3

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-006-0842-3

Key words

Navigation