Skip to main content
Log in

Middle-high latitude N2O distributions related to the Arctic vortex breakup

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The relationship of N2O distributions with the Arctic vortex breakup is first analyzed with a probability distribution function (PDF) analysis. The N2O concentration shows different distributions between the early and late vortex breakup years. In the early breakup years, the N2O concentration shows low values and large dispersions after the vortex breakup, which is related to the inhomogeneity in the vertical advection in the middle and high latitude lower stratosphere. The horizontal diffusion coefficient (K yy) shows a larger value accordingly. In the late breakup years, the N2O concentration shows high values and more uniform distributions than in the early years after the vortex breakup, with a smaller vertical advection and K yy after the vortex breakup. It is found that the N2O distributions are largely affected by the Arctic vortex breakup time but the dynamically defined vortex breakup time is not the only factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akiyoshi, H., 2000: Modeling of chemistry-radiation coupling processes for the middle atmosphere and a numerical experiment on CO2 doubling with a 1-D coupled model. J. Meteor. Soc. Japan, 78, 563–584.

    Google Scholar 

  • Akiyoshi, H., and M. Uryu, 1992: Diagnostic model study of the seasonal variation of global ozone and the Antarctic ozone hole. J. Geophys. Res., 97, 20,837–20,853.

    Google Scholar 

  • Akiyoshi, H., S. Sugata, T. Sugita, H. Nagajima, H. Hayashi, J. Kurokawa, and M. Takahashi, 2002a: Low-N2O air masses after the breakup of the Arctic polar vortex in 1997 simulated by the CCSR/NIES nudging CTM. J. Meteor. Soc. Japan, 80, 451–463.

    Google Scholar 

  • Akiyoshi, H., S. Sugata, T. Sugita, H. Nagajima, H. Hayashi, J. Kurokawa, and M. Takahashi, 2002b: Correction to “Low-N2O air masses after the breakup of the Arctic polar vortex in 1997 simulated by the CCSR/NIES nudging CTM”. J. Meteor. Soc. Japan, 80, 1308.

    Google Scholar 

  • Brasseur, G., and S. Solomon, 1986: Aeronomy of the Middle Atmosphere. D. Reidel Publishing Company, Dordrecht, Holland, 452pp.

    Google Scholar 

  • Fleming, E. L., C. H. Jackman, R. S. Stolarski, and D. B. Considine, 1999: Simulation of stratospheric tracers using an improved empirically based two-dimensional model transport formulation. J. Geophys. Res., 104, 23 911–23 934.

    Google Scholar 

  • Fleming, E. L., C. H. Jackman, D. B. Considine, and R. S. Stolarski, 2001: Sensitivity of tracers and a stratospheric aircraft perturbation to two-dimensional model transport variations. J. Geophys. Res., 106, 14245–14263.

    Article  Google Scholar 

  • Hartmann, D. L., 1978: A note concerning the effects of varying extinction on radiative-photochemical relaxation. J. Atmos. Sci., 35, 1125–1130.

    Article  Google Scholar 

  • Herman, R. L., and Coauthors, 1998: Tropical entrainment time scales from stratospheric N2O and CH4 observations. Geophys. Res. Lett., 25, 2781–2784.

    Google Scholar 

  • Hess, P. G., 1991: Mixing processes following the final stratospheric warming. J. Atmos. Sci., 48, 1625–1641.

    Article  Google Scholar 

  • Holton, J. R., 1986: Meridional distribution of stratospheric tracer constituents. J. Atmos. Sci., 43, 1238–1242.

    Article  Google Scholar 

  • Mahlman, J. D., H. Levy II, and W. J. Moxim, 1986: Three-dimensional simulations of stratospheric N2O: Predictions for other tracer constituents. J. Geophys. Res., 91, 2687–2707.

    Google Scholar 

  • Nakamura, N., and J. Ma, 1997: Modified Lagrangianmean diagnosis of the stratospheric polar vortices. 2. N2O and seasonal barrier migration in the CLAES and SKYHI general circulation model. J. Geophys. Res., 102, 25,721–25,735.

    Google Scholar 

  • Nash, E. R., P. A. Newman, J. E. Rosenfield, and M. R. Schoeberl, 1996: An objective determination of the polar vortex using Ertel’s potential vorticity. J. Geophys. Res., 101, 9471–9478.

    Article  Google Scholar 

  • Newman, P. A., M. R. Schoeberl, R. L. Plumb, and J. E. Rosenfield, 1988: Mixing rates calculated from potential vorticity. J. Geophys. Res., 93, 5221–5240.

    Google Scholar 

  • Orsolini, Y. J., 2001: Long-lived tracer patterns in the summer polar stratosphere. Geophys. Res. Lett., 28, 3855–3858.

    Google Scholar 

  • Sparling, L. C., 2000: Statistical perspectives on stratospheric transport. Rev. Geophys., 38, 417–436.

    Article  Google Scholar 

  • Strunk, M., A. Engel, U. Schmidt, C. M. Volk, T. Wetter, I. Levin, H. Glatzel-Matteier, 2000: CO2 and SF6 as stratospheric age tracers: Consistency and the effect of mesospheric SF6 loss. Geophys. Res. Lett., 25, 341–344.

    Google Scholar 

  • Yang, H., 1995: Three-dimensional transport of Ertel potential vorticity and N2O in the GFDL SKYHI model. J. Atmos. Sci., 52, 1513–1528.

    Article  Google Scholar 

  • Yang, H., K. K. Tung, and E. Olaguer, 1990: Non-geostrophic theory of zonally averaged circulation. Part II: Eliassen-Palm flux divergence and isentropic mixing coefficient. J. Atmos. Sci., 47, 215–241.

    Article  Google Scholar 

  • Waugh, D. W., and P. P. Rong, 2002: Interannual variability in the decay of lower stratospheric Arctic vortices. J. Meteor. Soc. Japan, 80, 997–1012.

    Article  Google Scholar 

  • Waugh, D. W., K. K. Kelly, P. A. Newman, and L. R. Lait, 1997: Mixing of polar vortex air into middle latitudes as revealed by tracer-tracer scatter plots. J. Geophys. Res., 102, 13,119–13,134.

    Google Scholar 

  • Waugh, D. W., W. J. Randel, S. Pawson, P. A. Newman, and E. R. Nash, 1999: Persistence of the lower stratospheric polar vortices. J. Geophys. Res., 104, 27,191–27,201.

    Article  Google Scholar 

  • WMO (World Meteorological Organization), 2003: Scientific Assessment of Ozone Depletion: 2002. Rep. 47. Global Ozone Res. and Monit. Proj., Geneva, Switzerland.

  • Zhou, S. T., M. E. Gelman, A. J. Miller, and J. P. McCormack, 2000: An inter-hemisphere comparison of the persistent stratospheric polar vortex. Geophys. Res. Lett., 27, 1123–1126.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, L., Zou, H. & Gao, Y. Middle-high latitude N2O distributions related to the Arctic vortex breakup. Adv. Atmos. Sci. 23, 215–223 (2006). https://doi.org/10.1007/s00376-006-0215-y

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-006-0215-y

Key words

Navigation