Skip to main content
Log in

Sensor calibration in support for NOAA’s satellite mission

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Sensor calibration, including its definition, purpose, traceability options, methodology, complexity, and importance, is examined in this paper in the context of supporting NOAA’s satellite mission. Common understanding of sensor calibration is essential for the effective communication among sensor vendors, calibration scientists, satellite operators, program managers, and remote sensing data users, who must cooperate to ensure that a nation’s strategic investment in a sophisticated operational environmental satellite system serves the nation’s interest and enhances the human lives around the world. Examples of calibration activities at NOAA/NESDIS/ORA are selected to further illustrate these concepts and to demonstrate the lessons learned from the past experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bremer, J. C., J. G. Baucom, H. Vu, M. P. Weinreb, and N. Pinkine, 1998: Estimation of long-term through-put degradation of GOES 8 & 9 visible channels by statistical analysis of star measurements. The International Society for Optical Engineering (SPIE). 3439, 145–154.

    Google Scholar 

  • Cao, C., M. Weinreb, and S. Kaplan, 2004a: Verification of the HIRS spectral response functions for more accurate atmospheric sounding. 2004 Conference on Characterization and Radiometric Calibration for Remote Sensing, Utah State University, August 23-26, 2004, Logan, Utah.

  • Cao, C., M. Weinreb, and H. Xu, 2004b: Predicting simultaneous nadir overpasses among polar-orbiting meteorological satellites for the intersatellite calibration of radiometers. J. Atmos. Oceanic Technol., 21, 537–542. [Available online at http://www.orbit.nesdis.noaa.gov/smcd/spb/ccao/Cao_etal2004a_sno.pdf]

    Article  Google Scholar 

  • Chang, I.-L., C. Dean, D. Han, D. S. Crosby, M. Weinreb, J. Baucom, P. Baltimore, and X. Wu, 2005: Improvements in the star-based monitoring of GOES Imager visible-channel responsivities. Proceedings of SPIE, Vol. 5882, doi: 10.1117/12.614601.

  • Ciren, P., and C. Cao, 2003: First comparison of radiances measured by AIRS/AQUA and HIRS/NOAA-16&-17. Proc. Internal ATOVS Working Group Conf., International TOVS Study Conference XIII, Sainte Adele, Canada, 609-616.

  • Cracknell, A. P., 1997: Advanced Very High Resolution Radiometer AVHRR. Taylor & Francis Books Ltd., 968pp.

  • Crosby, D., J. Baucom, I.-L. Chang, C. Dean, D. Han, L. McMillin, M. Weinreb, and X. Wu, 2005: Monitoring GOES Imager visible-channel responsivities using empirical distribution functions of Earth data. Proceedings of SPIE, Vol. 5882, doi: 10.1117/12.616933.

  • Gunshor, M. M., T. J. Schmit, and W. P. Menzel, 2004: Intercalibration of the infrared window and water vapor channels on operational geostationary environmental satellites using a single polar orbiting satellite. J. Atmos. Oceanic Technol., 21, 61–68. [Available online at http://cimss.ssec.wisc.edu/goes/intercal/JTECH_A-401_June2003_Intercal_Manuscript.pdf]

    Article  Google Scholar 

  • Gunshor, M. M., D. Tobin, T. J. Schmit, and W. P. Menzel, 2003: First satellite intercalibration comparing high spectral resolution AIRS with operational geostationary imagers. 12th Conf. on Satellite Meteorology and Oceanography, American Meteorological Society, Long Beach, CA.

    Google Scholar 

  • Heidinger, A., C. Cao, and J. Sullivan, 2002: Using MODIS to calibrate AVHRR reflectance channels. J. Geophys. Res., 107, 4702–4711. [Available online at http://www.ssec.wisc.edu/%7Eheidinger/papers/2001JD002035.pdf]

    Article  Google Scholar 

  • Ignatov, A, C. Cao, J. Sullivan, X. Wu, R. Levin, and R. Galvin, 2005: The usefulness of inflight measurements of space count to improve calibration of the AVHRR solar reflectance bands. J. Atmos. Oceanic Technol, 22, 180–200.

    Article  Google Scholar 

  • Johnson, B. C., 2004: The establishment and verification of NIST traceability for remote sensing radiometry: 10 years in the trenches and counting. 2004 Conf. Characterization and Radiometric Calibration for Remote Sensing, Logan, Utah.

  • Johnson, R. X., and M. P. Weinreb, 1996: GOES-8 imager midnight effects and slope correction. The International Society for Optical Engineering (SPIE), 2812, 596–607.

    Google Scholar 

  • Kidwell, K., Ed., 2000: NOAA KLM User’s Guide. [Available online at http://www2.ncdc.noaa.gov/docs/klm/index.htm]

  • Kigawa, S., and T. Mo, 2002: An algorithm for correction of lunar contamination in AMSU-A data. NOAA Tech. Rep., NESDIS 111, 30pp.

  • Menzel, W. P., and J. F. W. Purdom, 1994: Introducing GOES-I: The first of a new generation of geostationary operational environmental satellites. Bull. Amer. Meteor. Soc., 75, 757–781.

    Google Scholar 

  • Menzel, W. P., W. L. Smith, and L. D. Herman, 1981: Visible infrared spin-scan radiometer atmospheric sounder radiometric calibration: An inflight evaluation from intercomparisons with HIRS and radiosonde measurements. Appl. Opt., 20, 3641–3644.

    Google Scholar 

  • Rao, C. R. N., and J. Chen, 1995: Inter-satellite calibration linkages for the visible and near-infrared channels of the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-7,-9, and-11 spacecraft. Int. J. Remote Sens., 16, 1931–1942.

    Google Scholar 

  • Rao, C. R. N., and J. Chen, 1999: Revised post-launch calibration of the visible and near-infrared channels of the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-14 spacecraft. Int. J. Remote Sens., 20, 348–3491.

    Google Scholar 

  • Rao, P. K., S. J. Holmes, R. K. Anderson, J. S. Winston, and P. E. Lehr (Eds.), 1990: Weather Satellites: System, Data, and Environmental Applications. American Meteorological Society, Boston, MA, 503pp.

    Google Scholar 

  • Weinreb, M. P., M. Jamieson, N. Fulton, Y. Chen, J. X. Johnson, C. Smith, J. Bremer, and J. Baucom, 1997: Operational calibration of GOES-8 and-9 imagers and sounders. Appl. Opt., 36, 6895–6904. [Available online at http://www.oso.noaa.gov/goes/goescalibration/contents/page1.htm]

    Google Scholar 

  • Wu, X., 2003: Post-launch calibration of GOES Imager visible channel using MODIS. Proc. ISSSR’03. [Available online at http://www.orbit.nesdis.noaa.gov/smcd/spb/fwu/GOES-MODIS_Cross_Cal.pdf]

  • Wu, X., 2004: Operational calibration of AVHRR/3 solar reflectance channels. 2004 Conf. on Characterization and Radiometric Calibration for Remote Sensing, Logan, Utah. [Available online at http://www.orbit.nesdis.noaa.gov/smcd/spb/fwu/AVHRR_VISNIR_Cal.pdf]

  • Wu, X., and F. Sun, 2005: Post-launch calibration of GOES Imager visible channel using MODIS. Proceedings of SPIE, Vol. 5882, doi: 10.1117/12.615401.

  • Wu, X., W. P. Menzel, and G. S. Wade, 1999: Estimation of sea surface temperatures using GOES-8/9 radiance measurements. Bull. Amer. Meteor. Soc., 80, 1127–1138.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Cao, C. Sensor calibration in support for NOAA’s satellite mission. Adv. Atmos. Sci. 23, 80–90 (2006). https://doi.org/10.1007/s00376-006-0009-2

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-006-0009-2

Key words

Navigation