Skip to main content
Log in

Comparison of TRMM and water district rain rates over New Mexico

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

This paper compares monthly and seasonal rain rates derived from the Version 5 (V5) and Version 6 (V6) TRMM Precipitation Radar (TPR, TSDIS reference 2A25), TRMM Microwave Imager (TMI, 2A12), TRMM Combined Instrument (TCI, 2B31), TRMM calibrated IR rain estimates (3B42) and TRMM merged gauge and satellite analysis (3B43) algorithms over New Mexico (NM) with rain gauge analyses provided by the New Mexico water districts (WD). The average rain rates over the NM region for 1998–2002 are 0.91 mm d−1 for WD and 0.75, 1.38, 1.49, 1.27, and 1.07 mm d−1 for V5 3B43, 3B42, TMI, PR and TCA; and 0.74, 1.38, 0.87 and 0.97 mm d−1 for V6 3B43, TMI, TPR and TCA, respectively. Comparison of V5 3B43 with WD rain rates and the daily TRMM mission index (TPR and TMI) suggests that the low bias of V5 3B43 for the wet months (summer to early fall) may be due to the non-inclusion of some rain events in the operational gauge analyses that are used in the production of V5 3B43. Correlation analyses show that the WD rain rates vary in phase, with higher correlation between neighboring WDs. High temporal correlations (>0.8) exist between WD and the combined algorithms (3B42, 3B43 and TCA for both V5 and V6) while satellite instrument algorithms (PR, TMI and TCI) are correlated best among themselves at the monthly scale. Paired t-tests of the monthly time series show that V5 3B42 and TMI are statistically different from the WD rain rates while no significant difference exists between WD and the other products. The agreements between the TRMM satellite and WD gauge estimates are best for the spring and fall and worst for winter and summer. The reduction in V6 TMI (−7.4%) and TPR (−31%) rain rates (compared to V5) results in better agreement between WD estimates and TMI in winter and TPR during summer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, R., C. Kummerow, D. Bolvin, S. Curtis, and C. Kidd, 2003: Status of TRMM monthly estimates of tropical precipitation. Cloud Systems, Hurricanes, R. F. and the Tropical Rainfall Measuring Mission, W. K. Tao and R. F. Adler, Eds., Amer. Meteor. Soc., Boston, MA, 223–234.

    Google Scholar 

  • Bulmer, M. G., 1979: Principal of Statistics. Dover, 252pp.

  • Chang, A. T. C., L. S. Chiu, and G. Yang, 1995: Diurnal cycles of oceanic precipitation from SSM/I data. Mon. Wea. Rev., 123 3371–3380.

    Google Scholar 

  • Chiu, L., Z. Liu, H. Rui, and W. Teng, 2005a: Tropical Rainfall Measuring Mission (TRMM) data and access. Earth Science Satellite Remote Sensing, Qu et al., Eds., Springer and Tsinghua University Press. (in press)

  • Chiu, L., D.-B. Shin, and J. Kwaitowski, 2005b: Surface rain rates from TRMM algorithms. Earth Science Satellite Remote Sensing, Qu et al., Eds., Springer and Tsinghua University Press. (in press)

  • Fuchs, T., J. Rapp, F. Rubel, and B. Rudolf, 2001: Correction of synoptic precipitation observations due to systematic measurement errors with special regard to precipitation phases. Physics and Chemistry of the Earth, Part B—Hydrology Oceans and Atmosphere, 26 (9), 689–693.

    Google Scholar 

  • Haddad, Z. S., E. A. Smith, C. D. Kummerow, T. Iguchi, M. R. Farrar, S. L. Durden, M. Alves, and W. S. Olson, 1997a: The TRMM “Day-1” radar/radiometer combined rain-profiling algorithm. J. Meteor. Soc. Japan, 75, 799–809.

    Google Scholar 

  • Haddad, Z. S., D. A. Short, S. L. Durden, E. Im, S. Hensley, M. B. Grable and R.A. Black, 1997b: A new parametrization of the rain drop size distribution. IEEE Trans. Geosci. Rem. Sens., 35, 532–539.

    Google Scholar 

  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 5–20.

    Google Scholar 

  • Huffman, G. J., and Coauthors, 2001: Global precipitation at one degree daily resolution from multisatellite observations. J. Hydrometeon., 2 (1), 36–50.

    Google Scholar 

  • Huffman, G. J., R. Adler, D. Bolvin, and E. Nelkin, 2004: Uncertainty in fine-scale MPA precipitation estimates and implications for hydrometeorological analysis and forecasting. 18th Conf. on Hydrology, 11–18 January 2004, Seattle, WA.

  • Iguchi, Toshio, T. Kozu, R. Meneghini, J. Awaka, K. Okamoto, 2000: Rain-profiling algorithm for the TRMM precipitation radar. J. Appl. Meteor., 39, 2038–2052.

    Google Scholar 

  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Tech., 15, 809–816.

    Article  Google Scholar 

  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 1965–1982.

    Google Scholar 

  • Kummerow, C., and Coauthors, 2001: The evolution of the Goddard Profiling Algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 1801–1820.

    Article  Google Scholar 

  • Legates, D. R., and C. J. Willmott, 1990: Mean seasonal and spatial variability in gauge corrected, global precipitation. Int’1 J. of Clim., 10, 111–127.

    Google Scholar 

  • Liu, Z., H. Rui, W. Teng, and L. Chiu, 2003: Online analysis and visualization of TRMM and QuikSCAT products. Preprint, 12th Conference on Interactions of the Sea and Atmosphere, Long Beach, California, Amer. Meteor. Soc., Boston.

    Google Scholar 

  • Meneghini, R., J. A. Jones, T. Iguchi, K. Okamoto, and J. Kwiatkowski, 2004: A hybrid surface reference technique and its application to the TRMM precipitation radar. J. Atmos. Oceanic Tech., 21, 1645–1658.

    Article  Google Scholar 

  • Rudloff, W., 1981: World Climate, Books of the Journal Naturwissenschaftliche Rundschau, W.Holl, Ed., Wissenschaftliche Verlagsgesellschaft Stuttgart, 632pp.

  • Rudolf, B., H. Hauschild, W. Ruth, and U.Schneider, 1994: Terrestrial precipitation analysis: Operational method and required density of point measurements. Global Precipitation and Climate Change, Dubois and Desalmand, Eds., Springer Verlag, 173-186.

  • Rudolf, B., and F. Rubel, 2004: Global Precipitation. Observed Global Climate, Hantel, M. Ed., Springer-Verlag, (submitted, copy available from http://www.dwd.de/en/FundE/Klima/KLIS/int/G-PCC/Reports_Publications/QR/LB11RudolfRubel2-0040715oA.pdf)

  • Shin, D.-B., L. S. Chiu, and M. Kafatos, 2001: Comparison of the monthly precipitation derived from the TRMM satellite. Geophys. Res. Lett., 28 (5), 795–798.

    Article  Google Scholar 

  • Simpson, J., R. Adler, and G. North, 1988: A proposed Tropical Rainfall Measuring Mission satellite. Bull. Amer. Meteor. Soc., 69, 278–295.

    Google Scholar 

  • Sevruk, B. 1985: Correction of Precipitation Measurements. Proc. International Workshop on Precipitation Correction Measurements, Zurich, Switzerland, WMO/IAHS/ETH, 13–23.

    Google Scholar 

  • Young, C. B., B. R. Nelson, A. A. Bradley, J. A. Smith, C. D. Peters-Lidard, A. Kruger, and M. L. Baeck, 1999: An evaluation of NEXRAD precipitation estimates in complex terrain. J. Geophys. Res., 104 (D16), 19691–19703.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiu, L.S., Liu, Z., Vongsaard, J. et al. Comparison of TRMM and water district rain rates over New Mexico. Adv. Atmos. Sci. 23, 1–13 (2006). https://doi.org/10.1007/s00376-006-0001-x

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-006-0001-x

Key words

Navigation