Skip to main content
Log in

Influence of nitrogen on cellulose and lignin mineralization in blackwater and redwater forested wetland soils

  • ORIGINAL PAPER
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

 Microcosms were used to determine the influence of N additions on active bacterial and active fungal biomass, cellulose degradation and lignin degradation at 5, 10 and 15 weeks in soils from blackwater and redwater wetlands in the northern Florida panhandle. Blackwater streams contain a high dissolved organic C concentration which imparts a dark color to the water and contain low concentrations of nutrients. Redwater streams contain high concentrations of suspended clays and inorganic nutrients, such as N and P, compared to blackwater streams. Active bacterial and fungal biomass was determined by direct microscopy; cellulose and lignin degradation were measured radiometrically. The experimental design was a randomized block. Treatments were: soil type (blackwater or redwater forested wetlands) and N additions (soils amended with the equivalent of 0, 200 or 400 kg N ha–1 as NH4NO3). Redwater soils contained higher concentrations of C, total N, P, K, Ca, Mn, Fe, B and Zn than blackwater soils. After N addition and 15 weeks of incubation, the active bacterial biomass in redwater soils was lower than in blackwater soils; the active bacterial biomass in blackwater soils was lower when 400 kg N ha–1, but not when 200 kg N ha–1, was added. The active fungal biomass in blackwater soils was higher when 400 kg N ha–1, but not when 200 kg N ha–1, was added. The active fungal biomass in redwater wetland soils was lower when 200 kg N ha–1, but not when 400 kg N ha–1, was added. Cellulose and lignin degradation was higher in redwater than in blackwater soils. After 10 and 15 weeks of incubation, the addition of 200 or 400 kg N as NH4NO3 ha–1 decreased cellulose and lignin degradation in both wetland soils to similar levels. This study indicated that the addition of N may slow organic matter degradation and nutrient mineralization, thereby creating deficiencies of other plant-essential nutrients in wetland forest soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 7 April 1999

Rights and permissions

Reprints and permissions

About this article

Cite this article

Entry, J. Influence of nitrogen on cellulose and lignin mineralization in blackwater and redwater forested wetland soils. Biol Fertil Soils 31, 436–440 (2000). https://doi.org/10.1007/s003749900191

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003749900191

Navigation