Skip to main content
Log in

Leaf economics spectrum prevails over nutrient resorption in regulating the temperature sensitivity of litter decomposition in a subtropical forest ecosystem

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The LES and nutrient resorption are thought to jointly modulate leaf litter traits, including the litter decomposition, but it is unknown how the two factors affect the temperature sensitivity of litter decomposition (Q10). The Q10 of litter decomposition was evaluated for 15 co-occurring subtropical woody species under laboratory conditions. The LES of these species, as well as species-specific N (NRE) and P resorption efficiency (PRE) during leaf senescence, were also determined. Results showed that the Q10 values were significantly correlated to LES, with litters from resource-conservative species having higher Q10 values than those from resource-acquisitive species. Among the parameters characterizing LES, leaf N concentration, C:N ratio, and lignin:N ratio were correlated to Q10, whereas leaf P and lignin concentrations, specific leaf area, and C:P ratio showed no relationships. The LES was correlated to litter C:N and lignin:N ratios, and, in turn, litter C:N and lignin:N ratios were correlated to Q10. This result suggested that LES affects litter quality and thus the Q10 of litter decomposition. However, NRE and PRE were not correlated to Q10. In addition, the LES effects on litter quality and the Q10 of decomposition did not depend on nutrient resorption, as indicated by the lack of correlation between LES and NRE or PRE. Our results reveal an association between plant functional features and forest C dynamics in a warmer future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aerts R (1996) Nutrient resorption from senescing leaves of perennials: are there general patterns. J Ecol 84:597–608

    Article  Google Scholar 

  • Aerts R (2006) The freezer defrosting: global warming and litter decomposition rates in cold biomes. J Ecol 94:713–724

    Article  Google Scholar 

  • Bakker MA, Carreño-Rocabado G, Poorter L (2011) Leaf economics traits predict litter decomposition of tropical plants and differ among land use types. Funct Ecol 25:473–483

    Article  Google Scholar 

  • Bieleski RL (1973) Phosphate pools, phosphate transport, and phosphate availability. Annu Rev Ecol S 24:225–252

    CAS  Google Scholar 

  • Chao L, Liu YY, Freschet GT, Zhang WD, Yu X, Zheng WH, Guan X, Yang QP, Chen LC, Dijkstra FA, Wang SL (2019) Litter carbon and nutrient chemistry control the magnitude of soil priming effect. Funct Ecol 33:876–888

    Article  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  CAS  PubMed  Google Scholar 

  • Deng M, Liu L, Jiang L, Liu W, Wang X, Li S, Yang S, Wang B (2018) Ecosystem scale trade-off in nitrogen acquisition pathways. Nat Ecol Evol 2:1724

    Article  PubMed  Google Scholar 

  • Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE et al (2016) The global spectrum of plant form and function. Nature 529:167–171

    Article  PubMed  Google Scholar 

  • de la Riva EJ, Prieto I, Villar R (2019) The leaf economic spectrum drives leaf litter decomposition in Mediterranean forests. Plant Soil 435:353–366

    Article  Google Scholar 

  • Fierer N, Craine JM, Mclauchlan K, Schimel JP (2005) Litter quality and the temperature sensitivity of decomposition. Ecology 86:320–326

    Article  Google Scholar 

  • Fierer N, Colman BP, Schimel JP, Jackson RB (2006) Predicting the temperature dependence of microbial respiration in soil: a continental-scale analysis. Global Biogeochem Cy 20:GB3026

    Article  Google Scholar 

  • Freschet GT, Cornelissen JHC, van Logtestijn RSP, Aerts R (2010) Substantial nutrient resorption from leaves, stems and roots in a sub-arctic flora: what is the link with other resource economics traits? New Phytol 186:879–889

    Article  CAS  PubMed  Google Scholar 

  • Freschet GT, Aerts R, Cornelissen JHC (2012) A plant economics spectrum of litter decomposability. Funct Ecol 26:56–65

    Article  Google Scholar 

  • Gershenson A, Bader NE, Cheng WX (2009) Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition. Global Change Biol 15:176–183

    Article  Google Scholar 

  • Gritsch C, Egger F, Zehetner F, Zechmeister-Boltenstern S (2016) The effect of temperature and moisture on trace gas emissions from deciduous and coniferous leaf litter. J Geophys Res Biogeosci 121:1339–1351

    Article  CAS  Google Scholar 

  • Guo C, Cornelissen JHC, Tuo B, Ci H, Yan ER (2020) Invertebrate phenology modulates the effect of the leaf economics spectrum on litter decomposition rate across 41 subtropical woody plant species. Funct Ecol 34:735–746

    Article  Google Scholar 

  • Jackson BG, Peltzer DA, Wardle DA (2013) The within-species leaf economic spectrum does not predict leaf litter decomposability at either the within species or whole community levels. J Ecol 101:1409–1419

    Article  CAS  Google Scholar 

  • Jílková V, Straková P, Frouz J (2020) Foliage C:N ratio, stage of organic matter decomposition and interaction with soil affect microbial respiration and its response to C and N addition more than C:N changes during decomposition. Appl Soil Ecol 152:103568

    Article  Google Scholar 

  • Karhu K, Fritze H, Tuomi M, Vanhala P, Spetz P, Kitunen V, Liski J (2010) Temperature sensitivity of organic matter decomposition in two boreal forest soil profiles. Soil Biol Biochem 42:72–82

    Article  CAS  Google Scholar 

  • Kattge J, Diaz S, Lavorel S, Prentice C, Leadley P, Boenisch G, Garnier E, Westoby M, Reich P, Wright IJ, Cornelissen JHC, Violle C, Harrison SP, van Bodegom PM, Reichstein M, Enquist BJ, Soudzilovskaia NA, Ackerly DD, Anand M et al (2011) TRY - a global database of plant traits. Global Change Biol 17:2905–2935

    Article  Google Scholar 

  • Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498

    Article  CAS  Google Scholar 

  • Lamaze T, Pasche F, Pornon A (2003) Uncoupling nitrogen requirements for spring growth from root uptake in a young evergreen shrub (Rhododendron ferrugineum). New Phytol 159:637–644

    Article  CAS  PubMed  Google Scholar 

  • Li RS, Zhang YZ, Yu D, Wang Y, Zhao XX, Zhang RH, Zhang WD, Wang QK, Xu M, Chen LC, Wang SL, Han JM, Yang QP (2021) The decomposition of green leaf litter is less temperature sensitive than that of senescent leaf litter: an incubation study. Geoderma 381:114691

    Article  CAS  Google Scholar 

  • Li RS, Yu D, Zhang YK, Han JM, Zhang WD, Yang QP, Gessler A, Li MH, Xu M, Guan X, Chen LC, Wang QK, Wang SL (2022b) Investment of needle nitrogen to photosynthesis controls the nonlinear productivity response of young Chinese fir trees to nitrogen deposition. Sci Total Environ 840:156537

    Article  CAS  PubMed  Google Scholar 

  • Li RS, Yang QP, Guan X, Chen LC, Wang QK, Wang SL, Zhang WD (2022a) High quality litters with faster initial decomposition produce more stable residue remaining in a subtropical forest ecosystem. Catena 213:106134

    Article  CAS  Google Scholar 

  • Lin DM, Wang F, Fanin N, Pang M, Dou PP, Wang HJ, Qian SH, Zhao L, Yang YC, Mi XC, Ma KP (2019) Soil fauna promote litter decomposition but do not alter the relationship between leaf economics spectrum and litter decomposability. Soil Biol Biochem 136:107519

    Article  CAS  Google Scholar 

  • Lin DM, Yang SF, Dou PP, Wang HJ, Wang F, Qian SH, Yang GR, Zhao L, Yang YC, Fanin N (2020) A plant economics spectrum of litter decomposition among coexisting fern species in a subtropical forest. Ann Bot-London 125:145–155

    Article  CAS  Google Scholar 

  • Mao R, Zhang XH, Song CC, Wang XW, Finnegan PM (2018) Plant functional group controls litter decomposition rate and its temperature sensitivity: an incubation experiment on litters from a boreal peatland in northeast China. Sci Total Environ 626:678–683

    Article  CAS  PubMed  Google Scholar 

  • Pang XY, Zhu B, Lv XT, Cheng WX (2015) Labile substrate availability controls temperature sensitivity of organic carbon decomposition at different soil depths. Biogeochemistry 126:85–98

    Article  CAS  Google Scholar 

  • Reed SC, Townsend AR, Davidson EA, Cleveland CC (2012) Stoichiometric patterns in foliar nutrient resorption across multiple scales. New Phytol 196:173–180

    Article  CAS  PubMed  Google Scholar 

  • Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD (1999) Generality of leaf trait relationships: a test across six biomes. Ecology 80:1955–1969

    Article  Google Scholar 

  • Reich PB (2014) The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J Ecol 102:275–301

    Article  Google Scholar 

  • Rosenfield MV, Keller JK, Clausen C, Cyphers K, Funk JL (2020) Leaf traits can be used to predict rates of litter decomposition. Oikos 129:1589–1596

    Article  CAS  Google Scholar 

  • Santiago LS (2007) Extending the leaf economics spectrum to decomposition: evidence from a tropical forest. Ecology 88:1126–1131

    Article  PubMed  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. NREL Laboratory Analytical Procedure TP-510-42618. https://www.docin.com/p-99928203.html. Accessed 25 April 2008

  • Sun T, Hobbie SE, Berg B, Zhang HG, Wang QK, Wang ZW, Hattenschwiler S (2018) Contrasting dynamics and trait controls in first-order root compared with leaf litter decomposition. P Natl Acad Sci USA 115:10392–10397

    Article  CAS  Google Scholar 

  • Thiessen S, Gleixner G, Wutzler T, Reichstein M (2013) Both priming and temperature sensitivity of soil organic matter decomposition depend on microbial biomass-an incubation study. Soil Biol Biochem 57:739–748

    Article  CAS  Google Scholar 

  • Wang QK, Liu SE, Tian P (2018) Carbon quality and soil microbial property control the latitudinal pattern in temperature sensitivity of soil microbial respiration across Chinese forest ecosystems. Global Change Biol 24:2841–2849

    Article  Google Scholar 

  • Wang QK, Chen LC, Yang QP, Sun T, Li CM (2019) Different effects of single versus repeated additions of glucose on the soil organic carbon turnover in a temperate forest receiving long-term N addition. Geoderma 341:59–67

    Article  CAS  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

  • Xu JW, Lin GG, Liu B, Mao R (2020) Linking leaf nutrient resorption and litter decomposition to plant mycorrhizal associations in boreal peatlands. Plant Soil 448:413–424

    Article  CAS  Google Scholar 

  • Xu MP, Zhu YF, Zhang SH, Feng YZ, Zhang W, Han XH (2021) Global scaling the leaf nitrogen and phosphorus resorption of woody species: revisiting some commonly held views. Sci Total Environ 788:147807

    Article  CAS  PubMed  Google Scholar 

  • Zhao GS, Shi PL, Wu JS, Xiong DP, Zong N, Zhang XZ (2017) Foliar nutrient resorption patterns of four functional plants along a precipitation gradient on the Tibetan Changtang Plateau. Eco Evol 7:7201–7212

    Article  Google Scholar 

  • Zhang JL, Zhang SB, Chen YJ, Zhang YP, Poorter L (2015) Nutrient resorption is associated with leaf vein density and growth performance of dipterocarp tree species. J Ecol 103:541–549

    Article  Google Scholar 

  • Zhang WD, Chao L, Yang QP, Wang QK, Fang YT, Wang SL (2016) Litter quality mediated nitrogen effect on plant litter decomposition regardless of soil fauna presence. Ecology 97:2834–2843

    Article  PubMed  Google Scholar 

  • Zukswert JM, Prescott CE (2017) Relationships among leaf functional traits, litter traits, and mass loss during early phases of leaf litter decomposition in 12 woody plant species. Oecologia 185:305–316

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Xiuyong Zhang, Xiaojun Yu, Ke Huang, Dan Yu, Ruihan Zhang, and Xingxing Zhao for their invaluable assistance in the laboratory and the fieldwork.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. U22A20612), the National Key Research and Development Program of China (Grant Nos. 2021YFD2201303 and 2022YFF1303003), and the Natural Science Foundation of Henan Province (202300410287).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renshan Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 14 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Wang, Y., Yuan, C. et al. Leaf economics spectrum prevails over nutrient resorption in regulating the temperature sensitivity of litter decomposition in a subtropical forest ecosystem. Biol Fertil Soils 59, 901–910 (2023). https://doi.org/10.1007/s00374-023-01758-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-023-01758-w

Keywords

Navigation