Skip to main content

Advertisement

Log in

The active role of comammox Nitrospira in nitrification in acidic orchard soils revealed by DNA-SIP

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The recently discovered complete ammonia oxidizers (comammox Nitrospira) have fundamentally changed the perceptions of two-step nitrification. Previous studies suggest that comammox Nitrospira may outcompete canonical ammonia oxidizers under ammonia-limited conditions (e.g., acidic soils). However, there is no convincing evidence that links comammox Nitrospira activity to nitrification in acidic soils. Here, we report the relative contributions of ammonia-oxidizing bacteria (AOB), archaea (AOA), and comammox Nitrospira to nitrification in four orchard soils with different ages (5Y, 10Y, 20Y, and 30Y) and one adjacent natural forest soil (NF) in China. DNA-based stable-isotope probing demonstrated that both AOA and AOB assimilated 13CO2 in the nonacidic NF, 5Y, and 10Y soils, although a small shift from the light fractions to heavy fractions was observed for comammox Nitrospira clade A in the 10Y soil. Comammox Nitrospira clade A rather than AOA and AOB was labeled by 13CO2 in strongly acidic 30Y soil. In strongly acidic 20Y soil, comammox Nitrospira clade A was much more heavily labeled than AOB. These results suggest the different contributions of ammonia oxidizers to nitrification in orchard soils with different ages and a greater functional importance of comammox Nitrospira than canonical ammonia oxidizers in ammonia oxidation in the tested strongly acidic orchard soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Avrahami S, Liesack W, Conrad R (2003) Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers. Environ Microbiol 5:691–705

    Article  CAS  PubMed  Google Scholar 

  • Bartelme RP, Mclellan SL, Newton RJ (2017) Freshwater recirculating aquaculture system operations drive biofilter bacterial community shifts around a stable nitrifying consortium of ammonia-oxidizing archaea and comammox Nitrospira. Front Microbiol 8:101

    Article  PubMed  PubMed Central  Google Scholar 

  • Callahan BP, Yuan Y, Wolfenden R (2005) The burden borne by urease. J Am Chem Soc 127:10828–10829

    Article  CAS  PubMed  Google Scholar 

  • Cameron KC, Di HJ, Moir JL (2013) Nitrogen losses from the soil/plant system: a review. Ann Appl Biol 162:145–173

    Article  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M et al (2010) QIIME allows analysis of highthroughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carson PL (1980) Recommended potassium test. In: Dahnke WC (ed) Recommended chemical soil test procedures for the north central region. Bulletin 499, North Dakota Agricultural Experiment Station, Fargo, ND, pp 17–18

    Google Scholar 

  • Chu HY, Fujii T, Morimoto S, Lin XG, Yagi K, Hu JL, Zhang JB (2007) Community structure of ammonia-oxidizing bacteria under longterm application of mineral fertilizer and organic manure in a sandy loam soil. Appl Environ Microb 73:485–491

    Article  CAS  Google Scholar 

  • Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A, Kirkegaard RH, von Bergen M, Rattei T, Bendinger B, Nielsen PH, Wagner M (2015) Complete nitrification by Nitrospira bacteria. Nature 528:504–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daims H, Lücker S, Wagner M (2016) A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol 24:699–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson EA, Hart SC, Firestone MK (1992) Internal cycling of nitrate in soils of a mature coniferous forest. Ecology 73:1148–1156

    Article  Google Scholar 

  • De Boer W, Kowalchuk GA (2001) Nitrification in acid soils: micro-organisms and mechanisms. Soil Biol Biochem 33:853–866

    Article  Google Scholar 

  • Di HJ, Cameron KC, Shen JP, Winefield CS, O’Callaghan M, Bowatte S, He JZ (2009) Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nat Geosci 2:621–624

    Article  CAS  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460

    Article  CAS  PubMed  Google Scholar 

  • FAO (Food and Agricultural Organization, the United Nations), 2017. FAOSTAT. http://www.fao.org/faostat/en/. Accessed 20 Apr 2021

  • Fowler SJ, Palomo A, Dechesne A, Mines PD, Smets BF (2018) Comammox Nitrospira are abundant ammonia oxidizers in diverse groundwater-fed rapid sand filter communities. Environ Microbiol 20:1002–1015

    Article  CAS  PubMed  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  PubMed  Google Scholar 

  • Gao WL, Fan CH, Zhang W, Li N, Liu HR, Chen M (2023) Heterotrophic nitrification of organic nitrogen in soils: process, regulation, and ecological significance. Biol Fert Soils 59:261–274

    Article  CAS  Google Scholar 

  • Gubry-Rangin C, Hai B, Quince C, Engel M, Thomson BC, James P, Schloter M, Griffiths RI, Prosser JI, Nicol GW (2011) Niche specialization of terrestrial archaeal ammonia oxidizers. P Natl Acad Sci USA 108:21206–21211

    Article  CAS  Google Scholar 

  • Gubry-Rangin C, Nicol GW, Prosser JI (2010) Archaea rather than bacteria control nitrification in two agricultural acidic soils. FEMS Microbiol Ecol 74:566–574

    Article  CAS  PubMed  Google Scholar 

  • Hu HW, He JZ (2017) Comammox-a newly discovered nitrification process in the terrestrial nitrogen cycle. J Soil Sediment 17:2709–2717

    Article  CAS  Google Scholar 

  • Hu JJ, Zhao YX, Yao XW, Wang JQ, Zheng P, Xi CW, Hu BL (2021) Dominance of comammox Nitrospira in soil nitrification. Sci Total Environ 780:146558

    Article  CAS  PubMed  Google Scholar 

  • Huang XR, Zhao J, Su J, Jia ZJ, Shi XL, Wright AL, Zhu-Barker X, Jiang XJ (2018) Neutrophilic bacteria are responsible for autotrophic ammonia oxidation in an acidic forest soil. Soil Biol Biochem 119:83–89

    Article  CAS  Google Scholar 

  • Hyman M, Arp D (1992) 14C2H2- and 14CO2-labeling studies of the de novo synthesis of polypeptides by Nitrosomonas europaea during recovery from acetylene and light inactivation of ammonia monooxygenase. J Biol Chem 267:1534–1545

    Article  CAS  PubMed  Google Scholar 

  • Hyman MR, Wood PM (1985) Suicidal inactivation and labelling of ammonia monooxygenase by acetylene. Biochem J 227:719–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia Z, Conrad R (2009) Bacteria rather than archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol 11:1658–1671

    Article  CAS  PubMed  Google Scholar 

  • Jiang XJ, Hou XY, Zhou X, Xin XP, Wright A, Jia ZJ (2015) pH regulates key players of nitrification in paddy soils. Soil Biol Biochem 81:9–16

    Article  CAS  Google Scholar 

  • Kissel DE, Cabrera ML, Ferguson RB (1988) Reactions of ammonia and urea hydrolysis products with soil. Soil Sci Soc Am J 52:1793–1796

    Article  CAS  Google Scholar 

  • Kits KD, Sedlacek CJ, Lebedeva EV, Han P, Bulaev A, Pjevac P, Daebeler A, Romano S, Albertsen M, Stein LY (2017) Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549:269–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kӧnneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Article  Google Scholar 

  • Kowalchuk GA, Stienstra AW, Stephen JR, Woldendorp JW (2000) Changes in the community structure of ammonia-oxidizing bacteria during secondary succession of calcareous grasslands. Environ Microbiol 2:99–110

    Article  CAS  PubMed  Google Scholar 

  • Lehtovirta-Morley LE, Ge C, Ross J, Yao H, Nicol GW, Prosser JI (2014) Characterisation of terrestrial acidophilic archaeal ammonia oxidisers and their inhibition and stimulation by organic compounds. FEMS Microbiol Ecol 89:542–552

    Article  CAS  PubMed  Google Scholar 

  • Lehtovirta-Morley LE, Ross J, Hink L, Weber EB, Gubry-Rangin C, Thion C, Prosser JI, Nicol GW (2016) Isolation of 'Candidatus Nitrosocosmicus franklandus', a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration. FEMS Microbiol Ecol 92:fiw057

    Article  PubMed  PubMed Central  Google Scholar 

  • Li C, Hu HW, Chen QL, Chen D, He JZ (2019) Comammox Nitrospira play an active role in nitrification of agricultural soils amended with nitrogen fertilizers. Soil Biol Biochem 138:107609

    Article  CAS  Google Scholar 

  • Li C, Hu HW, Chen QL, Chen D, He JZ (2020a) Niche differentiation of clade A comammox Nitrospira and canonical ammonia oxidizers in selected forest soils. Soil Biol Biochem 149:107925

    Article  CAS  Google Scholar 

  • Li C, Hu HW, Chen QL, Yan ZZ, Nguyen BAT, Chen D, He JZ (2021) Niche specialization of comammox Nitrospira clade A in terrestrial ecosystems. Soil Biol Biochem 156:108231

    Article  CAS  Google Scholar 

  • Li S, Chen DW, Wang C, Chen D, Wang Q (2020b) Reduced nitrification by biochar and/or nitrification inhibitor is closely linked with the abundance of comammox Nitrospira in a highly acidic sugarcane soil. Biol Fert Soils 56:1219–1228

    Article  CAS  Google Scholar 

  • Li Y, Chapman SJ, Nicol GW, Yao H (2018) Nitrification and nitrifiers in acidic soils. Soil Biol Biochem 116:290–301

    Article  CAS  Google Scholar 

  • Lin Y, Fan J, Hu HW, Duan C, Ye G, Wan S, He ZY, Zheng Y, He JZ (2022) Differentiation of individual clusters of comammox Nitrospira in an acidic Ultisol following long-term fertilization. Appl Soil Ecol 170:104267

    Article  Google Scholar 

  • Lin Y, Ye G, Ding W, Hu HW, Zheng Y, Fan J, Wan S, Duan C, He JZ (2020) Niche differentiation of comammox Nitrospira and canonical ammonia oxidizers in soil aggregate fractions following 27-year fertilizations. Agr Ecosyst Environ 304:107147

    Article  CAS  Google Scholar 

  • Liu HY, Ding Y, Zhang QC, Liu XM, Xu JM, Li Y, Di HJ (2019b) Heterotrophic nitrification and denitrification are the main sources of nitrous oxide in two paddy soils. Plant Soil 445:39–53

    Article  CAS  Google Scholar 

  • Liu HY, Hu HW, Huang X, Ge TD, Li YF, Zhu ZK, Liu XM, Tan WF, Jia ZJ, Di HJ, Xu JM, Li Y (2021) Canonical ammonia oxidizers, rather than comammox Nitrospira, dominated autotrophic nitrification during the mineralization of organic substances in two paddy soils. Soil Biol Biochem 156:108192

    Article  CAS  Google Scholar 

  • Liu HY, Pan H, Hu HW, Jia ZJ, Zhang Q, Liu YM, Xu JM, Di HJ, Li Y (2019a) Autotrophic archaeal nitrification is preferentially stimulated by rice callus mineralization in a paddy soil. Plant Soil 445:55–69

    Article  CAS  Google Scholar 

  • Liu S, Wang H, Chen L, Wang J, Ni J (2020) Comammox Nitrospira within the Yangtze River continuum: community, biogeography, and ecological drivers. ISME J 14:2488–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu TL, Wang ZH, Wang SL, Zhao YP, Wright AL, Jiang XJ (2019c) Responses of ammonia-oxidizers and comammox to different long-term fertilization regimes in a subtropical paddy soil. Eur J Soil Biol 93:103087

    Article  CAS  Google Scholar 

  • Lu L, Han W, Zhang J, Wu Y, Wang B, Lin X, Zhu J, Cai Z, Jia Z (2012) Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea. ISME J 6:1978–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu L, Jia Z (2013) Urease gene-containing archaea dominate autotrophic ammonia oxidation in two acid soils. Environ Microbiol 15:1795–1809

    Article  CAS  PubMed  Google Scholar 

  • Lupo D, Li XD, Durand A, Tomizaki T, Cherif-Zahar B, Matassi G, Merrick M, Winkler FK (2007) The 1.3-A resolution structure of Nitrosomonas europaea Rh50 and mechanistic implications for NH3 transport by Rhesus family proteins. P Natl Acad Sci USA 104:19303–19308

    Article  CAS  Google Scholar 

  • Martens-HabbenaW BPM, Urakawa H, de la Torre JR, Stahl DA (2009) Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria. Nature 461:976–979

    Article  Google Scholar 

  • Meng C, Xing Y, Ding Y, Zhang Q, Di H, Tang C, Xu J, Li Y (2023) Soil acidification induced variation of nitrifiers and denitrifiers modulates N2O emissions in paddy fields. Sci Total Environ 882:163623

    Article  CAS  PubMed  Google Scholar 

  • Nguyen LTT, Broughton K, Osanai Y, Anderson IC, Bange MP, Tissue DT, Singh BK (2019) Effects of elevated temperature and elevated CO2 on soil nitrification and ammonia-oxidizing microbial communities in field-grown crop. Sci Total Environ 675:81–89

    Article  CAS  PubMed  Google Scholar 

  • Norton JM, Stark JM (2011) Regulation and measurement of nitrification in terrestrial systems. Method Enzymol 486:343–368

    Article  CAS  Google Scholar 

  • Offre P, Kerou M, Spang A, Schleper C (2014) Variability of the transporter gene complement in ammonia-oxidizing archaea. Trends Microbiol 22:665–675

    Article  CAS  PubMed  Google Scholar 

  • Offre P, Prosser JI, Nicol GW (2009) Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene. FEMS Microbiol Ecol 70:99–108

    Article  CAS  PubMed  Google Scholar 

  • Olsen SR, Cole CV, Watanbe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circular of U.S. Department of Agriculture

    Google Scholar 

  • Palomo A, Pedersen AG, Fowler SJ, Dechesne A, Sicheritz-Pontén T, Smets BF (2018) Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira. ISME J 12:1779–1793

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan H, Xie KX, Zhang QC, Jia ZJ, Xu JM, Di HJ, Li Y (2017) Archaea and bacteria respectively dominate nitrification in lightly and heavily grazed soil in a grassland system. Biol Fert Soils 54:41–54

    Article  Google Scholar 

  • Poghosyan L, Koch H, Lavy A, Frank J, van Kessel M, Jetten MSM, Banfield JF, Lücker S (2019) Metagenomic recovery of two distinct comammox Nitrospira from the terrestrial subsurface. Environ Microbiol 21:3627–3637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prosser JI, Hink L, Gubry-Rangin C, Nicol GW (2020) Nitrous oxide production by ammonia oxidizers: physiological diversity, niche differentiation and potential mitigation strategies. Glob Chang Biol 26:103–118

    Article  PubMed  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner F (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    Article  CAS  PubMed  Google Scholar 

  • Sakoula D, Koch H, Frank J, Jetten M, van Kessel MA, Lücker S (2021) Enrichment and physiological characterization of a novel comammox nitrospira indicates ammonium inhibition of complete nitrification. ISME J 15:1010–1024

    Article  CAS  PubMed  Google Scholar 

  • Shen JP, Zhang LM, Di HJ, He JZ (2012) A review of ammonia-oxidizing bacteria and archaea in Chinese soils. Front Microbiol 3:296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sterngren AE, Hallin S, Bengtson P (2015) Archaeal ammonia oxidizers dominate in numbers, but bacteria drive gross nitrification in N-amended grassland soil. Front Microbiol 6:1350

    Article  PubMed  PubMed Central  Google Scholar 

  • Subbarao GV, Ito O, Sahrawat KL, Berry WL, Nakahara K, Ishikawa T, Watanabe T, Suenaga K, Rondon M, Rao IM (2006) Scope and strategies for regulation of nitrification in agricultural systems-challenges and opportunities. Crit Rev Plant Sci 25:303–335

    Article  CAS  Google Scholar 

  • Takahashi Y, Fujitani H, Hirono Y, Tago K, Wang Y, Hayatsu M, Tsuneda S (2020) Enrichment of comammox and nitrite-oxidizing Nitrospira from acidic soils. Front Microbiol 11:1737

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tan C, Yin C, Li W, Fan X, Jiang Y, Liang Y (2022) Comammox Nitrospira play a minor role in N2O emissions from an alkaline arable soil. Soil Biol Biochem 171:108720

    Article  CAS  Google Scholar 

  • van Kessel MV, Speth DR, Albertsen M, Nielsen PH, Op den Camp HJ, Kartal B, Jetten MS, Lucker S (2015) Complete nitrification by a single microorganism. Nature 528:555–559

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang B, Zhao J, Guo Z, Ma J, Xu H, Jia Z (2015) Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils. ISME J 9:1062–1075

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Zheng Y, Huang R, Zhou X, Wang D, He Y, Jia Z (2014) Active ammonia oxidizers in an acidic soil are phylogenetically closely related to neutrophilic archaeon. Appl Environ Microb 80:1684–1691

    Article  Google Scholar 

  • Wang DQ, Zhou CH, Nie M, Gu JD, Quan ZX (2021) Abundance and niche specificity of different types of complete ammonia oxidizers (comammox) in salt marshes covered by different plants. Sci Total Environ 768:144993

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Huang Q, Li Y, Tu X, Chen Z, Elrys AS, Cheng Y, Ma L (2023) A shift from nitrification to denitrification-dominated N2O emission in an acidic soil following organic amendment. Biol Fert Soils 59:117–122

    Article  CAS  Google Scholar 

  • Wang Q, Zhang LM, Shen JP, Du S, Han LL, He JZ (2016) Nitrogen fertiliser-induced changes in N2O emissions are attributed more to ammonia-oxidising bacteria rather than archaea as revealed using 1-octyne and acetylene inhibitors in two arable soils. Biol Fert Soils 52:1163–1171

    Article  CAS  Google Scholar 

  • Wang Z, Cao Y, Wright AL, Shi X, Jiang X (2019b) Different ammonia oxidizers are responsible for nitrification in two neutral paddy soils. Soil Till Res 195:104433

    Article  Google Scholar 

  • Wang Z, Cao Y, Zhu-Barker X, Nicol G, Wright AL, Jia Z, Jiang X (2019a) Comammox Nitrospira clade B contributes to nitrification in soil. Soil Biol Biochem 135:392–395

    Article  CAS  Google Scholar 

  • Weidinger K, Neuhäuser B, Gilch S, Ludewig U, Meyer O, Schmidt I (2007) Functional and physiological evidence for a rhesus-type ammonia transporter in Nitrosomonas europaea. FEMS Microbiol Ecol 273:260–267

    Article  CAS  Google Scholar 

  • Xia F, Wang JG, Zhu T, Zou B, Rhee SK, Quan ZX (2018) Ubiquity and diversity of complete ammonia oxidizers (comammox). Appl Environ Microb 84:e01390–e01318

    Article  CAS  Google Scholar 

  • Xia W, Zhang C, Zeng X, Feng Y, Weng J, Lin X, Zhu J, Xiong Z, Xu J, Cai Z (2011) Autotrophic growth of nitrifying community in an agricultural soil. ISME J 5:1226–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu S, Wang B, Li Y, Jiang D, Zhou Y, Ding A, Zong Y, Ling X, Zhang S, Lu H (2020) Ubiquity, diversity, and activity of comammox Nitrospira in agricultural soils. Sci Total Environ 706:135684

    Article  CAS  PubMed  Google Scholar 

  • Zhang LM, Hu HW, Shen JP, He JZ (2012) Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J 6:1032–1045

    Article  CAS  PubMed  Google Scholar 

  • Zhang LM, Offre RR, He RZ, Verhamme RT, Nicol RW, Prosser RI (2010) Autotrophic ammonia oxidation by soil thaumarchaea. P Natl Acad Sci USA 107:17240–17245

    Article  CAS  Google Scholar 

  • Zhang Q, Li Y, He Y, Liu HY, Dumont MG, Brookes PC, Xu JM (2019) Nitrosospira cluster 3-like bacterial ammonia oxidizers and Nitrospira-like nitrite oxidizers dominate nitrification activity in acidic terrace paddy soils. Soil Biol Biochem 131:229–237

    Article  CAS  Google Scholar 

  • Zhao J, Meng Y, Drewer J, Skiba UM, Gubry-Rangin C (2020) Differential ecosystem function stability of ammonia-oxidizing archaea and bacteria following short-term environmental perturbation. mSystems 5:e00309–e00320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2021YFD1901205), National Natural Science Foundation of China (42007033 and 32061123007) and Natural Science Foundation of Hubei province (No. 2020CFA013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongen Liu or Wenfeng Tan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zhang, S., Xu, W. et al. The active role of comammox Nitrospira in nitrification in acidic orchard soils revealed by DNA-SIP. Biol Fertil Soils 59, 819–832 (2023). https://doi.org/10.1007/s00374-023-01749-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-023-01749-x

Keywords

Navigation