Anderson IC, Poth M, Homstead J, Burdige D (1993) A comparison of NO and N2O production by the autotrophic nitrifier Nitrosomonas europaea and the heterotrophic nitrifier Alcaligenes faecalis. Appl Environ Microbiol 59:3525–3533
CAS
Article
Google Scholar
Arango J, Moreta D, Núñez J, Hartmann K, Domínguez M, Ishitani M, Miles J, Subbarao G, Peters M, Rao I (2014) Developing methods to evaluate phenotypic variability in biological nitrification inhibition (BNI) capacity of Brachiaria grasses. Trop Grasslands - Forrajes Trop 2:6–8
Article
Google Scholar
Arango J, Ruden A, Martinez-Baron D, Loboguerrero AM, Berndt A, Chacón M, Torres CF, Oyhantcabal W, Gomez CA, Ricci P, Ku-Vera J, Burkart S, Moorby JM, Chirinda N (2020) Ambition meets reality: achieving GHG emission reduction targets in the livestock sector of Latin America. Front Sustain Food Syst 4:65. https://doi.org/10.3389/fsufs.2020.00065
Article
Google Scholar
Byrnes RC, Núñez J, Arenas L, Rao I, Trujillo C, Alvarez C, Arango J, Rasche F, Chirinda N (2017) Biological nitrification inhibition by Brachiaria grasses mitigates soil nitrous oxide emissions from bovine urine patches. Soil Biol Biochem 107:156–163. https://doi.org/10.1016/j.soilbio.2016.12.029
CAS
Article
Google Scholar
Cavigelli MA, Del Grosso SJ, Liebig MA, Snyder CS, Fixen PE, Venterea RT, Leytem AB, McLain JE, Watts DB (2012) US agricultural nitrous oxide emissions: context, status, and trends. Front Ecol Environ 10:537–546. https://doi.org/10.1890/120054
Article
Google Scholar
Chirinda N, Loaiza S, Arenas L, Ruiz V, Faverín C, Alvarez C, Savian JV, Belfon R, Zuniga K, Morales-Rincon LA, Trujillo C, Arango M, Rao I, Arango J, Peters M, Barahona R, Costa C, Rosenstock TS, Richards M, Martinez-Baron D, Cardenas L (2019) Adequate vegetative cover decreases nitrous oxide emissions from cattle urine deposited in grazed pastures under rainy season conditions. Sci Rep 9:908. https://doi.org/10.1038/s41598-018-37453-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Dannenmann M, Gasche R, Ledebuhr A, Papen H (2006) Effects of forest management on soil N cycling in beech forests stocking on calcareous soils. Plant Soil 287:279–300. https://doi.org/10.1007/s11104-006-9077-4
CAS
Article
Google Scholar
De Boer W, Kowalchuk GA (2001) Nitrification in acid soils: micro-organisms and mechanisms. Soil Biol Biochem 33:853–866. https://doi.org/10.1016/S0038-0717(00)00247-9
Article
Google Scholar
Egenolf K, Conrad J, Schöne J, Braunberger C, Beifuß U, Walker F, Nuñez J, Arango J, Karwat H, Cadisch G, Neumann G, Rasche F (2020a) Brachialactone isomers and derivatives of Brachiaria humidicola reveal contrasting nitrification inhibiting activity. Plant Physiol Biochem 154:491–497. https://doi.org/10.1016/j.plaphy.2020.06.004
CAS
Article
PubMed
Google Scholar
Egenolf K, Verma S, Schöne J, Klaiber I, Arango J, Cadisch G, Neumann G, Rasche F (2020b) Rhizosphere pH and cation-anion balance determine the exudation of nitrification inhibitor 3-epi-brachialactone suggesting release via secondary transport. Psysiol Plant 172:116–123. https://doi.org/10.1111/ppl.13300
CAS
Article
Google Scholar
Forster JC (1995) Soil Nitrogen. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic Press, Elsevier, Cambridge, USA, pp 79–87
Google Scholar
Geisseler D, Horwath WR (2009) Relationship between carbon and nitrogen availability and extracellular enzyme activities in soil. Pedobiologia (jena) 53:87–98. https://doi.org/10.1016/j.pedobi.2009.06.002
CAS
Article
Google Scholar
Hahn J, Crutzen PJ (1982) The role of fixed nitrogen in atmospheric photochemistry. Philos Trans R Soc London b, Biol Sci 296:521–541. https://doi.org/10.1098/rstb.1982.0024
CAS
Article
Google Scholar
Hink L, Nicol GW, Prosser JI (2017) Archaea produce lower yields of N2O than bacteria during aerobic ammonia oxidation in soil. Environ Microbiol 19:4829–4837. https://doi.org/10.1111/1462-2920.13282
CAS
Article
PubMed
Google Scholar
Horrocks CA, Arango J, Arevalo A, Nuñez J, Cardoso JA, Dungait JAJ (2019) Smart forage selection could significantly improve soil health in the tropics. Sci Total Environ 688:609–621. https://doi.org/10.1016/j.scitotenv.2019.06.152
CAS
Article
PubMed
PubMed Central
Google Scholar
Hu X, Liu C, Zheng X, Dannenmann M, Butterbach-Bahl K, Yao Z, Zhang W, Wang R, Cao G (2019) Annual dynamics of soil gross nitrogen turnover and nitrous oxide emissions in an alpine shrub meadow. Soil Biol Biochem 138:107576. https://doi.org/10.1016/j.soilbio.2019.107576
CAS
Article
Google Scholar
Karwat H, Moreta D, Arango J, Núñez J, Rao I, Rincón Á, Rasche F, Cadisch G (2017) Residual effect of BNI by Brachiaria humidicola pasture on nitrogen recovery and grain yield of subsequent maize. Plant Soil 420:389–406. https://doi.org/10.1007/s11104-017-3381-z
CAS
Article
Google Scholar
Kirkham D, Bartholomew WV (1954) Equations for following nutrient transformations in soil, utilizing tracer data1. Soil Sci Soc Am J 18:33–34. https://doi.org/10.2136/sssaj1954.03615995001800010009x
CAS
Article
Google Scholar
Leininger S, Urich T, Schloter M et al (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature. https://doi.org/10.1038/nature04983
Article
PubMed
Google Scholar
Linquist B, Van Groenigen KJ, Adviento-Borbe MA, Pittelkow C, Van Kessel C (2012) An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob Chang Biol 18:194–209. https://doi.org/10.1111/j.1365-2486.2011.02502.x
Article
Google Scholar
Liu R, Suter H, He J, Hayden H, Chen D (2015) Influence of temperature and moisture on the relative contributions of heterotrophic and autotrophic nitrification to gross nitrification in an acid cropping soil. J Soils Sediments 15:2304–2309. https://doi.org/10.1007/s11368-015-1170-y
CAS
Article
Google Scholar
Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide - Biol Chem 5:62–71
CAS
Article
Google Scholar
Müller C, Stevens RJ, Laughlin RJ (2004) A 15N tracing model to analyse N transformations in old grassland soil. Soil Biol Biochem 36:619–632. https://doi.org/10.1016/j.soilbio.2003.12.006
CAS
Article
Google Scholar
Nakamura S, Saliou PS, Takahashi M et al (2020) The contribution of root turnover on biological nitrification inhibition and its impact on the ammonia-oxidizing archaea under Brachiaria cultivations. Agronomy. https://doi.org/10.3390/agronomy10071003
Article
Google Scholar
Nardi P, Laanbroek HJ, Nicol GW, Renella G, Cardinale M, Pietramellara G, Weckwerth W, Trinchera A, Ghatak A, Nannipieri P (2020) Biological nitrification inhibition in the rhizosphere: Determining interactions and impact on microbially mediated processes and potential applications. FEMS Microbiol Rev 44:874–908. https://doi.org/10.1093/femsre/fuaa037
CAS
Article
PubMed
Google Scholar
Nuñez J, Arevalo A, Karwat H, Egenolf K, Miles J, Chirinda N, Cadisch G, Rasche F, Rao I, Subbarao G, Arango J (2018) Biological nitrification inhibition activity in a soil-grown biparental population of the forage grass, Brachiaria humidicola. Plant Soil 426:401–411. https://doi.org/10.1007/s11104-018-3626-5
CAS
Article
Google Scholar
Pandey CB, Kumar U, Kaviraj M, et al (2020) DNRA: A short-circuit in biological N-cycling to conserve nitrogen in terrestrial ecosystems. Sci. Total Environ.
Papen H, von Berg R, Hinkel I, Thoene B, Rennenberg H (1989) Heterotrophic nitrification by Alcaligenes faecalis: NO2-, NO3-, N2O, and NO production in exponentially growing cultures. Appl Environ Microbiol 55:2068–2072. https://doi.org/10.1128/aem.55.8.2068-2072.1989
CAS
Article
PubMed
PubMed Central
Google Scholar
Rice CW, Tiedje JM (1989) Regulation of nitrate assimilation by ammonium in soils and in isolated soil microorganisms. Soil Biol Biochem 21:597–602. https://doi.org/10.1016/0038-0717(89)90135-1
CAS
Article
Google Scholar
Rosswall T (1982) Microbiological regulation of the biogeochemical nitrogen cycle. Plant Soil 67:15–34. https://doi.org/10.1007/BF02182752
CAS
Article
Google Scholar
Rotthauwe J-H, Witzel K-P, Werner L (1997) The ammonia monooxygenase structural gene amoA as a functional marker Molecular fine-scale analysis of natural ammonia-oxidizing populations.pdf. Appl Environ Microbiol 63:4704–4712. https://doi.org/10.1128/AEM.NA
CAS
Article
PubMed
PubMed Central
Google Scholar
Sarr PS, Ando Y, Nakamura S, Deshpande S, Subbarao GV (2020) Sorgoleone release from sorghum roots shapes the composition of nitrifying populations, total bacteria, and archaea and determines the level of nitrification. Biol Fertil Soils 56:145–166. https://doi.org/10.1007/s00374-019-01405-3
Article
Google Scholar
Spohn M (2016) Element cycling as driven by stoichiometric homeostasis of soil microorganisms. Basic Appl Ecol 17:471–478. https://doi.org/10.1016/j.baae.2016.05.003
Article
Google Scholar
Subbarao GV, Yoshihashi T, Worthington M, Nakahara K, Ando Y, Sahrawat KL, Rao IM, Lata JC, Kishii M, Braun HJ (2015) Suppression of soil nitrification by plants. Plant Sci 233:155–164
CAS
Article
Google Scholar
Subbarao GV, Ishikawa T, Ito O, Nakahara K, Wang HY, Berry WL (2006) A bioluminescence assay to detect nitrification inhibitors released from plant roots: a case study with Brachiaria humidicola. Plant Soil 288:101–112. https://doi.org/10.1007/s11104-006-9094-3
CAS
Article
Google Scholar
Subbarao GV, Nakahara K, Hurtado MP, Ono H, Moreta DE, Salcedo AF, Yoshihashi AT, Ishikawa T, Ishitani M, Ohnishi-Kameyama M, Yoshida M, Rondon M, Rao IM, Lascano CE, Berry WL, Ito O (2009) Evidence for biological nitrification inhibition in Brachiaria pastures. Proc Natl Acad Sci U. S A 106:17302–17307. https://doi.org/10.1073/pnas.0903694106
Article
Google Scholar
Subbarao GV, Sahrawat KL, Nakahara K, Rao IM, Ishitani M, Hash CT, Kishii M, Bonnett DG, Berry WL, Lata JC (2013) A paradigm shift towards low-nitrifying production systems: the role of biological nitrification inhibition (BNI). Ann Bot 112:297–316. https://doi.org/10.1093/aob/mcs230
CAS
Article
PubMed
Google Scholar
Subbarao GV, Wang HY, Ito O, Nakahara K, Berry WL (2007) NH4+ triggers the synthesis and release of biological nitrification inhibition compounds in Brachiaria humidicola roots. Plant Soil 290:245–257. https://doi.org/10.1007/s11104-006-9156-6
CAS
Article
Google Scholar
Syakila A, Kroeze C (2011) The global nitrous oxide budget revisited. Greenh Gas Meas Manag 1:17–26. https://doi.org/10.3763/ghgmm.2010.0007
CAS
Article
Google Scholar
Teutscherova N, Vazquez E, Arango J, Arevalo A, Benito M, Pulleman M (2019a) Native arbuscular mycorrhizal fungi increase the abundance of ammonia-oxidizing bacteria, but suppress nitrous oxide emissions shortly after urea application. Geoderma 338:493–501. https://doi.org/10.1016/j.geoderma.2018.09.023
CAS
Article
Google Scholar
Teutscherova N, Vazquez E, Arevalo A, Pulleman M, Rao I, Arango J (2019b) Differences in arbuscular mycorrhizal colonization and P acquisition between genotypes of the tropical Brachiaria grasses: is there a relation with BNI activity? Biol Fertil Soils 55:325–337. https://doi.org/10.1007/s00374-019-01353-y
CAS
Article
Google Scholar
Vázquez E, Teutscherova N, Dannenmann M, Töchterle P, Butterbach-Bahl K, Pulleman M, Arango J (2020) Gross nitrogen transformations in tropical pasture soils as affected by Urochloa genotypes differing in biological nitrification inhibition (BNI) capacity. Soil Biol Biochem 151:108058. https://doi.org/10.1016/j.soilbio.2020.108058
CAS
Article
Google Scholar
Verhagen FJM, Laanbroek HJ, Woldendrop JW (1995) Competition for ammonium between plant roots and nitrifying and heterotrophic bacteria and the effects of protozoan grazing. Plant Soil 170:241–250. https://doi.org/10.1007/BF00010477
CAS
Article
Google Scholar
Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750. https://doi.org/10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2
Article
Google Scholar
Warlo H, Machacova K, Nordstrom N et al (2018) Comparison of portable devices for sub-ambient concentration measurements of methane (CH4) and nitrous oxide (N2O) in soil research. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2018.1517871
Article
Google Scholar
Wrage-Mönnig N, Horn MA, Well R, et al (2018) The role of nitrifier denitrification in the production of nitrous oxide revisited. Soil Biol Biochem
Xiao R, Qiu Y, Tao J, Zhang X, Chen H, Reberg-Horton SC, Shi W, Shew HD, Zhang Y, Hu S (2020) Biological controls over the abundances of terrestrial ammonia oxidizers. Glob Ecol Biogeogr 29:384–399. https://doi.org/10.1111/geb.13030
Article
Google Scholar
Xiao R, Ran W, Hu S, Guo H (2021) The response of ammonia oxidizing archaea and bacteria in relation to heterotrophs under different carbon and nitrogen amendments in two agricultural soils. Appl Soil Ecol 158:103812. https://doi.org/10.1016/j.apsoil.2020.103812
Article
Google Scholar
Zhang J, Sun W, Zhong W, Cai Z (2014) The substrate is an important factor in controlling the significance of heterotrophic nitrification in acidic forest soils. Soil Biol Biochem 76:143–148. https://doi.org/10.1016/j.soilbio.2014.05.001
CAS
Article
Google Scholar
Zhang J, Zhu T, Meng T, Zhang Y, Yang J, Yang W, Müller C, Cai Z (2013) Agricultural land use affects nitrate production and conservation in humid subtropical soils in China. Soil Biol Biochem 62:107–114. https://doi.org/10.1016/j.soilbio.2013.03.006
CAS
Article
Google Scholar