Skip to main content

Biological activities affect the dynamic of P in dryland soils

Abstract

Drylands are arid and semi-arid areas whose main feature is their low level of precipitation. They cover nearly half of Earth’s land surface and are distributed worldwide, constituting the planet’s largest biome. Dryland soils have low fertility, are greatly affected by climate variability, and are vulnerable to wind and water erosion. The phosphorus-rich soil dust traveling by aeolian processes from drylands is the main source of P for the global primary productivity in P-limited areas, a fact that highlights the importance of arid and semiarid areas in the global nutrient budget. This review discusses the development of dryland soils, the sources of P in drylands, the C, N, P, relation in dryland soils, the fractionation and bioavailability of P, and biotic and abiotic factors affecting the P in drylands. Finally, the dynamic of P in biological soil crusts and resource islands is discussed. Combined, they contribute to the surface organic matter pools, alter the soil fertility, and are determinant factors in P’s availability in dryland soils. We conclude the review by highlighting the gaps in knowledge that should be addressed in future research regarding biological and abiotic processes that determine the dynamics of P in drylands.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Acosta-Martinez V, Tabatabai MA (2011) Phosphorus cycle enzymes. In: Dick RP (Ed) Methods of soil enzymology. Soil Science Society of America, Madison, WI, pp 161-183

  • Ahmad M, Ahmad M, El-Naggar AH, Usman ARA, Abduljabbar A, Vithanage M, Elfaki J, Al-Faraj A, Al-Wabel M (2017) Aging effect of organic and inorganic fertilizer on phosphorus fractionation in calcareous sandy loam soil. Pedosphere 28:873–883

    Google Scholar 

  • Ameen F, AlYahya SA, AlNadhari S, Alasmari H, Alhoshani F, Wainwright M (2019) Phosphate solubilizing bacteria and fungi in desert soils: species, limitations and mechanisms. Arch Agron Soil Sci 65:1446–1459

    CAS  Google Scholar 

  • Anderson K, Wells S, Graham R (2002) Pedogenesis of vesicular horizons, cima volcanic field, Mojave Desert, California. Soil Sci Soc Am J 66:878–887

    CAS  Google Scholar 

  • Azadi A, Baghernejad M (2019) Application of kinetic models in describing soil phosphorus release in relation with soil phosphorus fractions across three soil toposequences of calcareous soils. Soil Chem 52:778–792

    Google Scholar 

  • Barkley AE, Prospero JM, Mahowald N, Hamilton DS, Popendor KJ, Oehlert AM, Pourmand A, Gatineau A, Panechou-Pulcherie K, Blackwelder P, Gaston CJ (2019) African biomass burning is a substantial source of phosphorus deposition to the Amazon, Tropical Atlantic Ocean, and Southern Ocean. PNAS 116:16216–16221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barnard RL, Blazewicz SJ, Firestone MK (2020) Rewetting of soil: revisiting the origin of soil CO2 emissions. Soil Biol Biochem 147:107819

    CAS  Google Scholar 

  • Bashan Y, de-Bashan LE (2010) Microbial populations of arid lands and their potential for restoration of deserts. In: Dion P (Ed) Soil Biology and Agriculture in the tropics. Chapter 6. Soil Biology Series 21. Springer, Berlin, pp. 109–137.

  • Bashan Y, Levanony H (1989) Effect of root environment on proton efflux in wheat roots. Plant Soil 119:191–197

    CAS  Google Scholar 

  • Bashan Y, Davis EA, Carrillo-Garcia A, Linderman RG (2000) Assessment of VA mycorrhizal inoculum potential in relation to the establishment of cactus seedlings under mesquite nurse-trees in the Sonoran Desert. Appl Soil Ecol 14:165–176

    Google Scholar 

  • Baumann K, Jung P, Samolov E, Lehnert LW, Büdel B, Karsten U, Bendix J, Achilles S, Schermer M, Matus F, Oses R (2018) Biological soil crusts along a climatic gradient in Chile: richness and imprints of phototrophic microorganisms in phosphorus biogeochemical cycling. Soil Biol Biochem 127:286–300

    CAS  Google Scholar 

  • Belnap J (2011) Biological phosphorus cycling in dryland regions. In: Bunemann EK, Oberson A, Frossard E (Eds) Phosphorus in action, biological processes in soil phosphorus cycling. Springer-Verlag, Berlin, pp 371-406

  • Bigio L, Mayol-Bracero OL, Santos G, Fishman A, Angert A (2020) Are the phosphate oxygen isotopes of Saharan dust a robust tracer of atmospheric P source? Atmos Environ 235:117561

    CAS  Google Scholar 

  • Blackwell MSA, Brookes PC, de la Fuente-Martinez N, Murray PJ, Snars KE, Williams JK, Haygarth PM (2009) Effects of soil drying and rate of re-wetting on concentrations and forms of phosphorus in leaching. Biol Fertil Soils 45:635–643

    Google Scholar 

  • Bowker MA, Belnap J, Davidson DW, Goldstein H (2006) Correlates of biological soil crust abundance across a continuum of spatial scales: support for a hierarchical conceptual model. J Appl Ecol 43:152–163

    Google Scholar 

  • Bowker MA, Mau RL, Maestre FT, Escolar C, Castillo-Monroy AP (2011) Functional profiles reveal unique ecological roles of various biological soil crust organisms. Funct Ecol 25:787–795

    Google Scholar 

  • Brady NC, Weil RR (2002) The nature and properties of soils, 3rd edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Brookes PC, Tate KR, Jenkinson DJ (1983) The adenylate energy charge of the soil microbial biomass. Soil Biol Biochem 15:9–16

    CAS  Google Scholar 

  • Brookes PC, Newcombe AD, Jenkinosn DS (1987) Adenylate energy charge measurements in soil. Soil Biol Biochem 19:211–217

    CAS  Google Scholar 

  • Brucker E, Spohn M (2019) Formation of soil phosphorus fractions along a climate and vegetation gradient in the Coastal Cordillera of Chile. CATENA 180:203–211

    CAS  Google Scholar 

  • Brucker E, Kerchen S, Spohn M (2020) Release of phosphorus and silicon from minerals by soil microorganisms depends on the availability of organic carbon. Soil Biol Biochem 143:107737

    CAS  Google Scholar 

  • Buckingham SE, Neff J, Titiz-Maybach B, Reynolds RL (2010) Chemical and textural controls on phosphorus mobility in drylands of southeastern Utah. Biogeochemistry 100:105–120

    CAS  Google Scholar 

  • Bunëmann EK, Keller B, Hoop D, Jud K, Bolvin P, Frossard E (2013) Increased availability of phosphorus after drying and rewetting of a grassland soil: process and plant use. Plant Soil 370:511–526

    Google Scholar 

  • Butterly CR, Bunëmann EK, McNeill AM, Baldock JA, Marschner P (2009) Carbon pulses but not phosphorus pulses are related to decreases in microbial biomass during repeated drying and rewetting of soils. Soil Biol Biochem 41:1406–1416

    CAS  Google Scholar 

  • Carrillo AE, Li CY, Bashan Y (2002) Increased acidification in the rhizosphere of cactus seedlings induced by Azospirillum brasilense. Naturwissenschaften 89:428–432

    CAS  PubMed  Google Scholar 

  • Chadwick OA, Davis JO (1990) Soil-forming intervals caused by eolian sediment pulses in the Lahontan basin, northwestern Nevada. Geology 18:243–246

    Google Scholar 

  • Ciardi C, Ceccanti B, Nannipieri P (1990) Method to determine the adenylate energy charge in soil. Soil Biol Biochem 23:1099–1101

    Google Scholar 

  • Concostrina-Zubiri L, Huber-Sannwald E, Martínez I, Flores JF, Escudero A (2013) Biological soil crusts greatly contribute to small-scale soil heterogeneity along a grazing gradient. Soil Biol Biochem 64:28–36

    CAS  Google Scholar 

  • Condron LM, Newman S (2011) Revisiting the fundamentals of phosphorus fractionation of sediments and soils. J Soils Sediments 11(830):840

    Google Scholar 

  • Cosentino D, Chenu C, Le Bissonnais Y (2006) Aggregate stability and microbial community dynamics under drying-wetting cycles in a silt loam soil. Soil Biol Bochem 38:2053–2062

    CAS  Google Scholar 

  • Crain GM, McLaren JR, Brunner B, Darrouzet-Nardi A (2018) Biologically available phosphorus in biocrust-dominated soils of the Chihuahuan Desert. Soil Systems 2:56

    CAS  Google Scholar 

  • De Caire GZ, de Cano MS, Palma RM, de Mulè CZ (2000) Changes in soil enzyme activities following additions of cyanobacterial biomass and exopolysaccharides. Soil Biol Biochem 32:1985–1987

    Google Scholar 

  • Delgado-Baquerizo M, Maestre F, Gallardo A, Bowker MA, Wallestein MD, Quero JL, Ochoa V, Gonzalo B, García-Gómez M, Soliveres S, García-Palacios P, Berdugo M, Valencia E, Esoclar C, Arredondo T, Barraza-Zepeda C, Bran D, Carreira JA, Chaieb M, Conceiçao AA, Derak M, Eldridge DJ, Escudero A, Espinosa CI, Gaitán J, Gatica MG, Gómez-González S, Guzman E, Gutiérrez JR, Florentino A, Hepper E, Hernández RM, Huber-Sannwaldk E, Jankju M, Liu J, Pucheta E, Ramírez E, Ramírez-Collantes DA, Romao R, Tighe M, Torres D, Torres-Diaz C, Ungar ED, Val J, Wamiti W, Wang D, Zaady E (2013) Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502:672–676

    CAS  PubMed  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Eldridge DJ, Bowker MA, Ochoa V, Gozalo B, Berdugo M, Val J, Singh BK (2016) Biocrust-forming mosses mitigate the negative impacts of increasing aridity on ecosystem multifunctionality in drylands. New Phytol 209:1540–1552

    CAS  PubMed  Google Scholar 

  • Delgado-Baquerizo M, Eldridge DJ, Maestre FT, Ochoa V, Gonzalo B, Reich PB, Singh BK (2018) Aridity decouples C:N: P stoichiometry across multiple trophic levels in terrestrial ecosystems. Ecosystems 21:459–468

    Google Scholar 

  • Dietze M, Bartel S, Lindner M, Kleber A (2012) Formation mechanisms and control factors of vesicular soil structure. CATENA 99:83–96

    CAS  Google Scholar 

  • Dietze M, Kleber A (2012) Contribution of lateral processes to stone pavement formation in deserts inferred from clast orientation patterns. Geomorphology 139–140:172–187

    Google Scholar 

  • Dixon JC (2009) Aridic soils, patterned ground, and desert pavements. In: Parsons AJ, Abrahams AD (Eds) Geomorphology of desert environments, Springer, Dordrecht, Netherlands. pp. 101–122

  • Dossa EL, Diedhiou S, Compton JE, Assigbetse KB, Dick RP (2010) Spatial patterns of P fractions and chemical properties in soils of two native shrub communities in Senegal. Plant Soil 327:185–198

    CAS  Google Scholar 

  • Eldridge DJ, Delgado-Baquerizo M, Quero JL, Ochoa V, Gonzalo B, García-Palacios P, Escolar C, García-Gómez M, Prina A, Bowker MA, Bran DE, Castro I, Cea A, Derak M, Espinosa CI, Florentino A, Gaitán JJ, Gatica G, Goómez-González S, Ghiloufi W, Gutierrez JR, Gusmán-Montalván E, Hernández RM, Hughes FM, Muiño W, Monerris J, Ospina A, Ramírez DA, Ribas-Fernández YA, Romão RL, Torres-Díaz C, Koen TB, Mestre FT (2020) Surface indicators are correlated with soil multifunctionality global drylands. J Appl Ecol 57:424–435

    CAS  Google Scholar 

  • Erinle KO, Doolette A, Marschner P (2020) Changes in phosphorus pools in the detritusphere induced by removal of P or switch of residues with low and high C/P ratio. Biol Fertil Soils 56:1–10

    CAS  Google Scholar 

  • Feng J, Turner BL, Lü X, Chen Z, Wei K, Tian J, Wang Ch, Luo W, Chen L (2016) Phosphorus transformation along a large-scale climosequence in arid and semiarid grasslands of northern China. Global Biogeochem Cy 30:1264–1275

    CAS  Google Scholar 

  • Fookes PG, Hart AB, Lee EM (2013) Some near-surface desert features of significance in engineering geology evaluations. Q J Eng Geol Hydroge 46:259–266

    Google Scholar 

  • Gao X, Li X, Zhao L, Kuzykov Y (2019) Regulation of soil phosphorus cycling in grassland by shrubs. Soil Biol Biochem 133:1–11

    CAS  Google Scholar 

  • Garcia DE, Lopez BR, de-Bashan LE, Hirsch M, Maymon M, Bashan Y (2018) Functional metabolic diversity of the bacterial community in undisturbed resource island soils in the southern Sonoran Desert. Land Degrad Dev 29:1467–1477

    Google Scholar 

  • Garcia C, Moreno JL, Hernandez T, Bastida F (2017) Soils in arid and semiarid environments: the importance of organic carbon and microbial population. Facing the future. In: Blire S (Ed) The Biology of Arid Soils. Walter de Gruyter GmbH.

  • Geesing D, Felker P, Bingham RL (2000) Influence of mesquite (Prosopis glandulosa) on soil nitrogen and carbon development: implications for global carbon sequestration. J Arid Environ 46:157–180

    Google Scholar 

  • Gong Y, Lv G, Guo Zh, Chen Y, Cao J (2017) Influence of aridity and salinity on plant nutrients scales up from species to community level in a desert ecosystem. Sci Rep 7:6811

    PubMed  PubMed Central  Google Scholar 

  • Gordon H, Haygarth PM, Bardgett RD (2008) Drying and rewetting effects on soil microbial community composition and nutrient leaching. Soil Biol Biochem 40:302–311

    CAS  Google Scholar 

  • Gu Ch, Hart S, Turner BL, Hu Y, Meng Y, Zhu M (2019) Aeolian dust deposition and the perturbation of phosphorus transformations during long-term ecosystem development in a cool, semi-arid environment. Geochim Cosmochim Ac 246:498–514

    CAS  Google Scholar 

  • Gutiérrez M (2005) Desert surfaces: pavements, patterned ground, varnishes and crusts. In: Gutiérrez M (Ed) Developments in Earth Surface Processes, Vol. 8, Elsevier, Amsterdam, pp 259–284

  • Hamdali H, Bouizgarne B, Hafidi M, Lebrihi A, Virolle MJ, Ouhdouch Y (2008) Screening for rock phosphate solubilizing actinomycetes from Moroccan phosphate mines. Appl Soil Ecol 38:12–19

    Google Scholar 

  • Hartley A, Barger N, Belnap J, Okin GS (2007) Dryland ecosystems. In: Marschner P, Rengel Z (Eds) Nutrient cycling in terrestrial ecosystems, Springer Berlin Heidelberg, pp. 271–307

  • Hou E, Chen Ch, Luo Y, Zhou G, Kuang Y, Zhang Y, Heenan M, Lu X, Wen D (2017) Effects on climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Glob Change Biol 24:3344–3356

    Google Scholar 

  • Housman DC, Yeager CM, Darby BJ, Sanford RL Jr, Kuske CR, Neher DA, Belnap J (2007) Heterogeneity of soil nutrients and subsurface biota in a dryland ecosystem. Soil Biol Biochem 39:2138–2149

    CAS  Google Scholar 

  • Hutchinson CF, Herrmann SM (2008) The future of arid lands — revisited: a review of 50 years of drylands research. Advances in Global Change Research Series, 32. Springer Netherlands.

  • Ippolito JA, Blecker SW, Freeman CL, McCulley RL, Blair JM, Kelly EF (2010) Phosphorus biogeochemistry across a precipitation gradient in grasslands of central North America. J Arid Environ 74:954–961

    Google Scholar 

  • Jobbagy EG, Jackson RB (2001) The distribution of soil nutrients with depth: global patterns and the in print of plants. Biogeochemistry 53:51–77

    CAS  Google Scholar 

  • Joner EJ, van Aarle IM, Vosatka M (2000) Phosphatase activity of extra-radical arbuscular mycorrhizal hyphae: a review. Plant Soil 226:199–210

    CAS  Google Scholar 

  • Jung P, Schermer M, Briegel-Williams L, Baumann K, Leinweber P, Karsten U, Lehnert L, Achilles S, Bendix J, Büdel B (2019) Water availability shapes edaphic and lithic cyanobacterial communities in the Atacama Desert. J Phycol 55:1306–1318

    CAS  PubMed  Google Scholar 

  • Kalma JD, Franks S (2003) Rainfall in arid and semi-arid regions. In: Simmers I (Ed) Understanding water in a dry environment: hydrological processes in arid and semi-arid zones, Vol. 23. Balkema, Lisse, Netherlands, pp. 15-56

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganism in sustainable agriculture- a review. Agron Sustain Dev 27:29–43

    Google Scholar 

  • Kieft TL, Soroker E, Firestone MJ (1987) Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biol Biochem 19:119–126

    Google Scholar 

  • Knight J, Zerboni A (2018) Formation of desert pavements and the interpretation of lithic-strewn landscapes of the central Sahara. J Arid Environ 153:39–51

    Google Scholar 

  • Kondo J, Hirobe M, Yamada Y, Undarmaa J, Sakamoto K, Yoshikawa K (2012) Effects of Caragana microphylla patch and its canopy size on “islands of fertility” in a Mongolian grassland ecosystem. Lands Ecol Eng 8:1–8

    Google Scholar 

  • Kpomblekou-A K, Tabatabai MA (1994) Effect of organic acids on release of phosphorus from phosphate rocks. Soil Sci 158:442–453

    CAS  Google Scholar 

  • Kpomblekou-A K, Tabatabai MA (2003) Effect of low-molecular weight organic acids on phosphorus release and phytoavailabilty of phosphorus in phosphate rocks added to soils. Agr Ecosyst Environ 100:275–284

    CAS  Google Scholar 

  • Lajtha K, Schlesinger WH (1988) The biogeochemistry of phosphorus cycling and phosphorus availability along a desert soil chronosequence. Ecology 6:24–39

    Google Scholar 

  • Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103

    PubMed  Google Scholar 

  • Lopez BR, Bacilio M (2020) Weathering and soil formation in hot, dry environments mediated by plant–microbe interactions. Biol Fertil Soils 56:447–459

    CAS  Google Scholar 

  • Magallon-Servin P, Antoun H, Taktek S, Bashan Y, de-Bashan LE (2020) The maize mycorrhizosphere as a source for isolation of arbuscular mycorrhizae-compatible phosphate rock-solubilizing bacteria. Plant Soil 451:169–186

    CAS  Google Scholar 

  • Mahowald N, Jickells TD, Baker AR, Artaxo P, Benitez-Nelson CR, Bergametti G, Bond TC, Chen Y, Cohen DD, Herut B, Kubilay N, Losno R, Luo C, Maenhaut W, Mcgee KA, Okin GS, Siefert RL (2008) Global distribution of atmospheric phosphorus sources concentrations and deposition rates and anthropogenic impacts. Global Biogeochem Cy 22:GB4026

    Google Scholar 

  • Maier S, Schmidt TS, Zheng L, Peer T, Wagner V, Grube M (2014) Analyses of dryland biological soil crusts highlight lichens as an important regulator of microbial communities. Biodivers Conserv 23:1735–1755

    Google Scholar 

  • Margalef O, Sardans J, Fernandez-Martinez M, Molowny-Horas R, Janssens IA, Ciais P, Goll D, Ritcher A, Obersteiner M, Asensio D, Peñuelas J (2017) Global pattern of phosphatase activity in natural soils. Sci Rep 7:1337–1357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miralles I, Domingo F, Cantón Y, Trasar-Cepeda C, Leirós MC, Gil-Sotres F (2012) Hydrolase enzyme activities in a successional gradient of biological soil crusts in arid and semi-arid zones. Soil Biol Biochem 53:124–132

    CAS  Google Scholar 

  • Monger HC, Martinez-Rios JJ, Khresat SA (2005) Tropical Soils - Arid and Semiarid. In: Hillel D (Ed) Encyclopedia of soils in the environment, Elsevier, London, pp. 182–187

  • Moradi G, Bol R, Trbojevic L, Missong A, Mörchen R, Fuentes B, May SM, Lehndorff E, Klumpp E (2020) Contrasting depth distribution of colloid-associated phosphorus in the active and abandoned sections of an alluvial fan in a hyper-arid region of the Atacama Desert. Global Planet Change 185.

  • Mudrak EL, Schafer JL, Fuentes-Ramirez A, Holzapfel C, Moloney KA (2014) Predictive modeling of spatial patterns of soil nutrients related to fertility islands. Landscape Ecol 29:491–505

    Google Scholar 

  • Nannipieri P, Grego S, Ceccamti B (1990) Ecological significance of the biological activity in soil. In: Bollag J-M, Stotzky G (Eds) Soil biochemistry vol 6. Marcel Dekker, New York, pp 293-356

  • Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Bunemann EK, Oberson A, Frossard E (Eds) Phosphorus in action, biological processes in soil phosphorus cycling. Springer-Verlag Berlin, pp. 215-241

  • Nannipieri P, Trazar-Cepeda C, Dick RP (2018) Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biol Fertil Soils 54:11–19

    CAS  Google Scholar 

  • Nedeau J, Qualls R, Nowak R, Blank R (2007) The potential bioavailability of organic C, N, and P through enzyme hydrolysis in soils of the Mojave Desert. Biogeochemistry 82:305–320

    Google Scholar 

  • Neff JC, ReynoldsSanford RRL Jr, Fernandez D (2006) Controls of bedrock geochemistry on soil and plant nutrients in Southeastern Utah. Ecosystems 9:879–893

    CAS  Google Scholar 

  • Newman EI (1995) Phosphorus inputs to terrestrial ecosystems. Ecology 83:713–726

    Google Scholar 

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51

    Google Scholar 

  • Okin GS, Murray B, Schlesinger WH (2001) Degradation of sandy arid shrubland environments: observations, process modelling, and management implications. J Arid Environ 47:123–144

    Google Scholar 

  • Osman KT (2018) Management of soil problems. In: Osman KT (Ed) Management of Soil Problems. Springer, Cham, Switzerland, pp. 15–36

  • Osorio NW, Habte M (2014) Soil phosphate desorption induced by a phosphate-solubilizing fungus. Commun Soil Sci Plant Anal 45:451–460

    CAS  Google Scholar 

  • Perez E, Sulbarán M, Ball MM, Yarzábal LA (2007) Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biol Biochem 39:2905–2914

    CAS  Google Scholar 

  • Plaza C, Zaccone C, Sawicka K, Méndez AM, Tarquis A, Gascó G, Heuvelink GBM, Schuur EAG, Maestre FT (2018) Soil resources and element stocks in drylands to face global issues. Sci Rep 8:1–8

    CAS  Google Scholar 

  • Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nature Rev Microbiol 10:551–562

    CAS  Google Scholar 

  • Qiu G, Zhu M, Meng J, Luo Y, Di H, Xu J, Brookes P (2019) Changes in soil microbial biomass C, ATP and microbial P concentration due to increasing soil Cd levels in Chinese paddy soils growing rice (Oryza sativa). Plant Soil 436:1–12

    CAS  Google Scholar 

  • Read CF, Duncan DH, Vesk PA, Elith J (2008) Biological soil crust distribution is related to patterns of fragmentation and land use in a dryland agricultural landscape of southern Australia. Landscape Ecol 23:1093–1105

    Google Scholar 

  • Reyes I, Baziramakenga R, Bernier L, Antoun H (2001) Solubilization of phosphate rocks and minerals by a wild-type strain and two UV-induced mutants of Penicillium rugulosum. Soil Biol Biochem 33:1741–1747

    CAS  Google Scholar 

  • Rosacker LL, Kieft TL (1990) Biomass and adenylkate energy charge of a grassland soil during drying. Soil Biol Biochem 22:1121–1127

    Google Scholar 

  • Rossi BE, Villagra PE (2003) Effects of Prosopis flexuosa on soil properties and the spatial pattern of understory species in arid Argentina. J Veg Sci 14:543–550

    Google Scholar 

  • Safriel U, Zafar A (2005) Dryland Systems. In: Hassan R, Scholes R, Ash N (Eds) Ecosystems and human well-being: current state and trends. Island Press, Washington, DC, pp. 625–662

  • Sagoe CI, Ando T, Kouno K, Nagaoka T (1998) Relative importance of protons and solution calcium concentration in phosphate rock dissolution by organic acids. Soil Sci Plant Nutr 44:617–625

    Google Scholar 

  • Salazar PC, Navarro-Cerrillo RM, Grados N, Cruz G, Barrón V, Villar R (2019) Tree size and leaf traits determine the fertility island effect in Prosopis pallida dryland forest in Northern Peru. Plant Soil 437:117–135

    CAS  Google Scholar 

  • Schimel DS (2010) Drylands in the earth system. Science 327(418):419

    Google Scholar 

  • Segoli M, Ungar ED, Giladi I, Arnon A, Shachak M (2012) Untangling the positive and negative effects of shrubs on herbaceous vegetation in drylands. Landscape Ecol 27:899–910

    Google Scholar 

  • Segoli M, Ungar ED, Shachak M (2012) Fine-scale spatial heterogeneity of resource modulation in semi-arid “Islands of Fertility.” Arid Land Res Manag 26:344–354

    Google Scholar 

  • Selmants PC, Hart SC (2010) Phosphorus and soil development: does the Walker and Syers model apply to semiarid ecosystems? Ecology 91:474–484

    PubMed  Google Scholar 

  • Soil Survey Staff (2014) Keys to soil taxonomy. Soil Conservation Service, 12, 410. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_051546.pdf. Accessed 11 Sept 2020

  • Song O, Lee S, Lee Y, Lee S, Kim K, Choi Y (2008) Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Braz J Microbiol 39:151–156

    PubMed  PubMed Central  Google Scholar 

  • Sulbaran M, Perez E, Ball MM, Bahsas A, Yarzabal LA (2009) Characterization of the mineral phosphate-solubilizing activity of Pantoea aglomerans MMB051 isolated from an iron-rich soil in southeastern Venezuela (Bolivar state). Curr Microbiol 58:378–383

    CAS  PubMed  Google Scholar 

  • Taradfar JC, Jungk A (1987) Phsophatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biol Fertil Soils 3:199–204

    Google Scholar 

  • Tiessen H, Menezes RSC, Salcedo IH, Wick B (2003) Organic matter transformations and soil fertility in a treed pasture in semiarid NE Brazil. Plant Soil 252:195–205

    CAS  Google Scholar 

  • Tunesi S, Poggi V, Gessa C (1999) Phosphate adsorption and precipitation in calcareous soils: the role of calcium ions in solution and carbonate minerals. Nutr Cycl Agroecosys 53:219–227

    Google Scholar 

  • Turner BA, Papházy MJ, Haygarth PM, McKelvie IA (2002) Inositol phosphates in the environment. Philos T Roy Soc B 357:449–469

    CAS  Google Scholar 

  • Turner BL, Cade-Menun BJ, Wastermann DT (2003) Organic phosphorus composition and potential bioavailability in semi-arid arable soils of the western United States. Soil Sci Soc Am J 67:1168–1179

    CAS  Google Scholar 

  • Turner BL, Driessen JP, Haygarth PM, McKelvie ID (2003) Potential contribution of lysed bacterial cells to phosphorus solubilisation in two rewetted Australian pasture soils. Soil Biol Biochem 35:187–189

    CAS  Google Scholar 

  • UNEMG (2011) Global drylands: a UN system-wide response. United Nations Environment Management Group. Online [accessed 8 august 2020]: https://www.unep-wcmc.org/resources-and-data/global-drylands--a-un-system-wide-response

  • Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecol Appl 20:5–15

    PubMed  Google Scholar 

  • Walbridge MR (1991) Phosphorus availability in acid organic soils of the lower North Carolina coastal plain. Ecology 72:2083–2100

    Google Scholar 

  • Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19

    CAS  Google Scholar 

  • Wang YP, Law RM, Pak B (2010) A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 2261–2282.

  • Wang H, Cai Y, Yang Q, Gong Y, Lv G (2019) Factors that alter the relative importance of abiotic and biotic drivers on the fertile island in a desert-oasis ecotone. Sci Total Environ 697:134096

    CAS  PubMed  Google Scholar 

  • Warke PA (2013) Weathering in arid regions. In: Shroder J (Ed) Treatise on geomorphology, Vol 4. Academic Press, San Diego, CA, pp. 197-227

  • Wei X, Hu Y, Razavi BS, Zhou J, Shen J, Nannipieri P, Wu J, Ge T (2019) Rare taxa of alkaline phosphomonoesterase-harboring microorganisms mediate soil phosphorus mineralization. Soil Biol Biochem 131:62–70

    CAS  Google Scholar 

  • Whitton BA, Al-Shehri AM, Ellwood NTW, Turner BL (2005) Ecological aspects of phosphatase activity in cyanobacteria, eukaryotic algae and bryophytes. In: Turner BL, Frossard E, Baldwin DS (Eds) Organic phosphorus in the environment. CABI, Cambridge, MA, pp. 205-241

  • Williams AJ, Buck BJ, Beyene MA (2012) Biological soil crusts in the Mojave Desert, USA: Micromorphology and pedogenesis. Soil Sci Soc Am J 76:1685–1695

    CAS  Google Scholar 

  • Zhao HL, Zhou RL, Su YZ, Zhang H, Zhao LY, Drake S (2007) Shrub facilitation of desert land restoration in the Horqin Sand Land of Inner Mongolia. Ecol Eng 31:1–8

    Google Scholar 

  • Zúñiga-Silgado D, Rivera-Leyva J, Coleman J, Sanchez-Reyez A, Valencia-Díaz S, Serrano M, de-Bashan L, Folch-Mallol JL (2020) Soil mineralogy affects organic acid production and phosphorus solubilization efficiency mediated by several native fungal strains from Mexico. Microorganisms 8:1337

    PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. de-Bashan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dedication: This study is dedicated to the memory of Prof. Yoav Bashan (1951–2018) a leading figure in the field of microbial ecology of desert areas and founder of the Environmental Microbiology Group At CIBNOR and Bashan Institute of Science

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de-Bashan, L.E., Magallon-Servin, P., Lopez, B.R. et al. Biological activities affect the dynamic of P in dryland soils. Biol Fertil Soils 58, 105–119 (2022). https://doi.org/10.1007/s00374-021-01609-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-021-01609-6

Keywords

  • Resource islands
  • Biological soil crust
  • Organic P
  • Inorganic P
  • Rock weathering
  • Mobilization
  • Mineralization
  • Phosphatases