Blum U, Gerig TM, Worsham AD, King LD (1993) Modification of allelopathic effects of p-coumaric acid on morning-glory seedling biomass by glucose, methionine, and nitrate. J Chem Ecol 19:2791–2811. https://doi.org/10.1007/BF00980584
CAS
Article
PubMed
Google Scholar
Brookes PC, Kragt JF, Powlson DS, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: the effects of fumigation time and temperature. Soil Biol Biochem 17:831–835. https://doi.org/10.1016/0038-0717(85)90143-9
CAS
Article
Google Scholar
Bryant JP, Clausen TP, Reichardt PB, McCarthy MC, Werner RA (1987) Effect of nitrogen fertilization upon the secondary chemistry and nutritional value of quaking aspen (Populus tremuloides Michx.) leaves for the large aspen tortrix (Choristoneura conflictana (Walker)). Oecologia 73:513–517. https://doi.org/10.1007/BF00379408
CAS
Article
PubMed
Google Scholar
Burney OT, Jacobs DF (2012) Terpene production and growth of three Pacific Northwest conifers in response to simulated browse and nutrient availability. Trees 26:1331–1342. https://doi.org/10.1007/s00468-012-0709-4
CAS
Article
Google Scholar
Byrnes RC, Nùñez J, Arenas L, Rao I, Trujillo C, Alvarez C, Arango J, Rasche F, Chirinda N (2017) Biological nitrification inhibition by Brachiaria grasses mitigates soil nitrous oxide emissions from bovine urine patches. Soil Biol Biochem 107:156–163. https://doi.org/10.1016/j.soilbio.2016.12.029
CAS
Article
Google Scholar
Castilla CE, Jackson WA (1991). Nitrogen uptake mechanism in two Brachiaria species: Y-315. In: McBride, T.P. (Ed.), Tropsoils Technical Report, 1988–1989. Raleigh NC, pp. 164–167.
Castoldi G, Reis JGd, Pivetta LA, Rosolem CA (2013) Soil nitrogen dynamics after Brachiaria desiccation. Rev Bras Ciênc Solo 37:1620–1627. https://doi.org/10.1590/S0100-06832013000600018
Article
Google Scholar
Cochrane T, Salinas J, Sánchez P (1980) An equation for liming acid mineral soils to compensate crop aluminium tolerance. Trop Agric 57(2):133–140
CAS
Google Scholar
Cohn AS, Mosnier A, Havlík P, Valin H, Herrero M, Schmid E, O’Hare M, Obersteiner M (2014) Cattle ranching intensification in Brazil can reduce global greenhouse gas emissions by sparing land from deforestation. Proc Natl Acad Sci USA 111:7236–7241. https://doi.org/10.1073/pnas.1307163111
CAS
Article
PubMed
PubMed Central
Google Scholar
Davidson EA, Hart SC, Firestone MK (1992) Internal cycling of nitrate in soils of a mature coniferous forest. Ecology 73:1148–1156. https://doi.org/10.2307/1940665
Article
Google Scholar
Di HJ, Cameron KC, Shen JP, Winefield CS, O’Callaghan M, Bowatte S, He JZ (2009) Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nature Geosci 2:621–624. https://doi.org/10.1038/ngeo613
CAS
Article
Google Scholar
Egenolf K, Conrad J, Schöne J, Braunberger C, Beifuß U, Walker F, Nuñez J, Arango J, Karwat H, Cadisch G, Neumann G, Rasche F (2020) Brachialactone isomers and derivatives of Brachiaria humidicola reveal contrasting nitrification inhibiting activity. Plant Physiol Bioch 154:491–497. https://doi.org/10.1016/j.plaphy.2020.06.004
CAS
Article
Google Scholar
Egenolf K, Verma S, Schöne J, Klaiber I, Arango J, Cadisch G, Neumann G, Rasche F (2020) Rhizosphere pH and cation-anion balance determine exudation of nitrification inhibitor 3-epi-brachialactone suggesting release via secondary transport. Physiol Plant 172:116–123. https://doi.org/10.1111/ppl.13300
CAS
Article
Google Scholar
Egenolf K (2021) Biochemical and ecophysiological characterization of BNI (Biological Nitrification Inhibition) by Brachiaria humidicola, PhD Dissertation submitted to the Faculty of Agricultural Sciences, University of Hohenheim
Garbuio FJ, Jones DL, Alleoni LRF, Murphy DV, Caires EF (2011) Carbon and nitrogen dynamics in an oxisol as affected by liming and crop residues under No-Till. Soil Sci Soc Am J 75:1723–1730. https://doi.org/10.2136/sssaj2010.0291
CAS
Article
Google Scholar
Girvan MS, Bullimore J, Pretty JN, Osborn AM, Ball AS (2003) Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl Environ Microbiol 69:1800–1809. https://doi.org/10.1128/AEM.69.3.1800-1809.2003
CAS
Article
PubMed
PubMed Central
Google Scholar
Gopalakrishnan S, Subbarao GV, Nakahara K, Yoshihashi T, Ito O, Maeda I, Ono H, Yoshida M (2007) Nitrification Inhibitors from the root tissues of Brachiaria humidicola, a tropical grass. J Agric Food Chem 55:1385–1388. https://doi.org/10.1021/jf062593o
CAS
Article
PubMed
Google Scholar
Hodge A, Robinson D, Fitter A (2000) Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci 5:304–308. https://doi.org/10.1016/S1360-1385(00)01656-3
CAS
Article
PubMed
Google Scholar
Hussain SM (2016) Primary and secondary metabolites production in signal grass around the year under nitrogen fertilizer. https://www.teses.usp.br/teses/disponiveis/74/74131/tde-14072016-094209/en.php
ISO 7890–3 (1988) Water quality — determination of nitrate — part 3: spectrometric method using sulfosalicylic acid. https://www.iso.org/standard/14842.html
ISO 14240–2 (1997) Determination of soil microbial biomass. Part 2: fumigation-extraction method. https://www.iso.org/standard/23951.html
IUSS working group WRB (2006) World reference base for soil resources: a framework for international classification, correlation and communication. World soil resources reports, vol 103. Food and Agriculture Organization of the United Nations FAO, Rome
Jackson LE, Schimel JP, Firestone MK (1989) Short-term partitioning of ammonium and nitrate between plants and microbes in an annual grassland. Soil Biol Biochem 21:409–415. https://doi.org/10.1016/0038-0717(89)90152-1
Article
Google Scholar
Jörgensen RG (1996) The fumigation-extraction method to estimate soil microbial biomass: calibration of the KEC value. Soil Biol Biochem 28:25–31. https://doi.org/10.1016/0038-0717(95)00102-6
Article
Google Scholar
Kaimowitz D, Angelsen A (2008) Will livestock intensification help save Latin America’s tropical forests? J Sustain Forestry 27:6–24. https://doi.org/10.1080/10549810802225168
Article
Google Scholar
Karwat H, Moreta D, Arango J, Núñez J, Rao I, Rincón Á, Rasche F, Cadisch G (2017) Residual effect of BNI by Brachiaria humidicola pasture on nitrogen recovery and grain yield of subsequent maize. Plant Soil 420:389–406. https://doi.org/10.1007/s11104-017-3381-z
CAS
Article
Google Scholar
Karwat H, Egenolf K, Nuñez J, Rao I, Rasche F, Arango J, Moreta D, Arevalo A, Cadisch G (2018) Low 15N natural abundance in shoot tissue of Brachiaria humidicola is an indicator of reduced N losses due to biological nitrification inhibition (BNI). Front Microbiol 9:2383. https://doi.org/10.3389/fmicb.2018.02383
Article
PubMed
PubMed Central
Google Scholar
Karwat H, Sparke M-A, Rasche F, Arango J, Nuñez J, Rao I, Moreta D, Cadisch G (2019) Nitrate reductase activity in leaves as a plant physiological indicator of in vivo biological nitrification inhibition by Brachiaria humidicola. Plant Physiol Biochem 137:113–120. https://doi.org/10.1016/j.plaphy.2019.02.002
CAS
Article
PubMed
Google Scholar
Kaur-Bhambra J, Wardak DLR, Prosser JI, Gubry-Rangin C (2021) Revisiting plant biological nitrification inhibition efficiency using multiple archaeal and bacterial ammonia-oxidising cultures. Biol Fert Soils. https://doi.org/10.1007/s00374-020-01533-1
Article
Google Scholar
Kaye JP, Hart SC (1997) Competition for nitrogen between plants and soil microorganisms. Trends Ecol Evol 12:139–143. https://doi.org/10.1016/S0169-5347(97)01001-X
CAS
Article
PubMed
Google Scholar
Kempers AJ, Zweers A (1986) Ammonium determination in soil extracts by the salicylate method. Commun Soil Sci Plant 17(7):715–723. https://doi.org/10.1080/00103628609367745
CAS
Article
Google Scholar
Kreidenweis U, Humpenöder F, Kehoe L, Kuemmerle T, Bodirsky BL, Lotze-Campen H, Popp A (2018) Pasture intensification is insufficient to relieve pressure on conservation priority areas in open agricultural markets. Glob Chang Biol 24:3199–3213. https://doi.org/10.1111/gcb.14272
Article
PubMed
Google Scholar
Kuzyakov Y, Xu X (2013) Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol 198:656–669. https://doi.org/10.1111/nph.12235
CAS
Article
PubMed
Google Scholar
Lavola A, Julkunen-Tiitto R (1994) The effect of elevated carbon dioxide and fertilization on primary and secondary metabolites in Birch, Betula pendula (Roth). Oecologia 99:315–321
CAS
Article
PubMed
Google Scholar
Leptin A, Whitehead D, Anderson CR, Cameron KC, Lehto NJ (2021) Increased soil nitrogen supply enhances root-derived available soil carbon leading to reduced potential nitrification activity. Appl Soil Ecol 159:103842. https://doi.org/10.1016/j.apsoil.2020.103842
Article
Google Scholar
Li S-X, Wang Z-H, Stewart BA (2013) Responses of crop plants to ammonium and nitrate N. Adv Agron 118:205–397. https://doi.org/10.1016/B978-0-12-405942-9.00005-0
Article
Google Scholar
Li P-N, Herrmann J, Tolar BB, Poitevin F, Ramdasi R, Bargar JR, Stahl DA, Jensen GJ, Francis CA, Wakatsuki S, van den Bedem H (2018) Nutrient transport suggests an evolutionary basis for charged archaeal surface layer proteins. ISME J 12:2389–2402. https://doi.org/10.1038/s41396-018-0191-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Lodhi MAK, Killingbeck KT (1980) Allelopathic inhibition of nitrification and nitrifying bacteria in a ponderosa pine (Pinus ponderosa Dougl) Community. Am J Bot 67:1423. https://doi.org/10.2307/2442870
CAS
Article
Google Scholar
Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London
Google Scholar
Miles JW, Do Valle CB, Rao IM, Euclides VPB (2004) Brachiariagrasses. In: Moser LE, Burson BL, Sollenberger LE (Eds) Warm-season (C4) grasses. American Society of Agronomy; Crop Science Society of America; Soil Science Society of America, Madison, WI, pp 745–783. https://doi.org/10.2134/agronmonogr45.c1
Moreta DE, Arango J, Sotelo M, Vergara D, Rincón A, Ishitani M, Castro A, Miles J, Peters M, Tohme J, Subbarao GV, Rao IM (2014) Biological nitrification inhibition (BNI) in Brachiaria pastures: a novel strategy to improve eco-efficiency of crop-livestock systems and to mitigate climate change. Trop Grass - Forr Trop 2:88. https://doi.org/10.17138/TGFT(2)88-91
Article
Google Scholar
Nakamura T, Miranda CHB, Ohwaki Y, Valéio JR, Kim Y, Macedo MCM (2005) Characterization of nitrogen utilization by Brachiaria grasses in Brazilian savannas (Cerrados). Soil Sci Plant Nutr 51:973–979. https://doi.org/10.1111/j.1747-0765.2005.tb00136.x
Article
Google Scholar
Nakamura S, Saliou PS, Takahashi M, Ando Y, Subbarao GV (2020) The contribution of root turnover on biological nitrification inhibition and its impact on the ammonia-oxidizing archaea under Brachiaria cultivations. Agronomy 10:1003. https://doi.org/10.3390/agronomy10071003
CAS
Article
Google Scholar
Nardi P, Laanbroek HJ, Nicol GW, Renella G, Cardinale M, Pietramellara G, Weckwerth W, Trinchera A, Ghatak A, Nannipieri P (2020) Biological nitrification inhibition in the rhizosphere: determining interactions and impact on microbially mediated processes and potential applications. FEMS Microbiol Rev 44:874–908. https://doi.org/10.1093/femsre/fuaa037
CAS
Article
PubMed
Google Scholar
Norton JM (2008) Nitrification in agricultural soils. In: Schepers JS, Raun W (eds) Nitrogen in agricultural systems. American Society of Agronomy, Madison, WI, pp 173–199
Google Scholar
Norton JM, Firestone MK (1996) N dynamics in the rhizosphere of Pinus ponderosa seedlings. Soil Biol Biochem 28:351–362. https://doi.org/10.1016/0038-0717(95)00155-7
CAS
Article
Google Scholar
Nuñez J, Arevalo A, Karwat H, Egenolf K, Miles J, Chirinda N, Cadisch G, Rasche F, Rao I, Subbarao G, Arango J (2018) Biological nitrification inhibition activity in a soil-grown biparental population of the forage grass, Brachiaria humidicola. Plant Soil 426:401–411. https://doi.org/10.1007/s11104-018-3626-5
CAS
Article
Google Scholar
Prosser JI, Nicol GW (2012) Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol 20:523–531. https://doi.org/10.1016/j.tim.2012.08.001
CAS
Article
PubMed
Google Scholar
R Core Team (2018) R: a language and environment for statistical computing. https://www.R-project.org
Rao IM, Ayarza MA, Garcia R (1995) Adaptive attributes of tropical forage species to acid soils I. Differences in plant growth, nutrient acquisition and nutrient utilization among C4 grasses and C3 legumes. J Plant Nutr 18:2135–2155. https://doi.org/10.1080/01904169509365052
CAS
Article
Google Scholar
Rasche F, Hödl V, Poll C, Kandeler E, Gerzabek MH, van Elsas JD, Sessitsch A (2006) Rhizosphere bacteria affected by transgenic potatoes with antibacterial activities compared with the effects of soil, wild-type potatoes, vegetation stage and pathogen exposure. FEMS Microbiol Ecol 56:219–235. https://doi.org/10.1111/j.1574-6941.2005.00027.x
CAS
Article
PubMed
Google Scholar
Rudel TK, Paul B, White D, Rao IM, van der Hoek R, Castro A, Boval M, Lerner A, Schneider L, Peters M (2015) LivestockPlus: forages, sustainable intensification, and food security in the tropics. Ambio 44:685–693. https://doi.org/10.1007/s13280-015-0676-2
Article
PubMed
PubMed Central
Google Scholar
Schimel JP, Jackson LE, Firestone MK (1989) Spatial and temporal effects on plant-microbial competition for inorganic nitrogen in a California annual grassland. Soil Biol Biochem 21:1059–1066. https://doi.org/10.1016/0038-0717(89)90044-8
CAS
Article
Google Scholar
Sessitsch A, Weilharter A, Gerzabek MH, Kirchmann H, Kandeler E (2001) Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl Environ Microbiol 67:4215–4224. https://doi.org/10.1128/aem.67.9.4215-4224.2001
CAS
Article
PubMed
PubMed Central
Google Scholar
Silveira CP, Lima JE, Lavres Jr. J, Bendassoli JA, Figueira AVO, Abdalla AL (2014) Nitrogen uptake and expressions of nitrate transporter genes in two tropical forage grasses. 51st Reunião Annual da Sociedade Brasileira de Zootecnia, Barra dos Coqueiros, Sergipe, Brasil
Stark JM, Hart SC (1997) High rates of nitrification and nitrate turnover in undisturbed coniferous forests. Nature 385:61–64. https://doi.org/10.1038/385061a0
CAS
Article
Google Scholar
Strassburg BBN, Latawiec AE, Barioni LG, Nobre CA, da Silva VP, Valentim JF, Vianna M, Assad ED (2014) When enough should be enough: Improving the use of current agricultural lands could meet production demands and spare natural habitats in Brazil. Global Environ Chang 28:84–97. https://doi.org/10.1016/j.gloenvcha.2014.06.001
Article
Google Scholar
Srikanthasamy T, Leloup J, N’Dri AB, Barot S, Gervaix J, Koné AW, Koffi KF, Le Roux X, Raynaud X, Lata J-C (2018) Contrasting effects of grasses and trees on microbial N-cycling in an African humid savanna. Soil Biol Biochem 117:153–163. https://doi.org/10.1016/j.soilbio.2017.11.016
CAS
Article
Google Scholar
Subbarao GV, Ishikawa T, Ito O, Nakahara K, Wang HY, Berry WL (2006) A bioluminescence assay to detect nitrification inhibitors released from plant roots: a case study with Brachiaria humidicola. Plant Soil 288:101–112. https://doi.org/10.1007/s11104-006-9094-3
CAS
Article
Google Scholar
Subbarao GV, Wang HY, Ito O, Nakahara K, Berry WL (2007) NH4+ triggers the synthesis and release of biological nitrification inhibition compounds in Brachiaria humidicola roots. Plant Soil 290:245–257. https://doi.org/10.1007/s11104-006-9156-6
CAS
Article
Google Scholar
Subbarao GV, Nakahara K, Ishikawa T, Yoshihashi T, Ito O, Ono H, Ohnishi-Kameyama M, Yoshida M, Kawano N, Berry WL (2008) Free fatty acids from the pasture grass Brachiaria humidicola and one of their methyl esters as inhibitors of nitrification. Plant Soil 313:89–99. https://doi.org/10.1007/s11104-008-9682-5
CAS
Article
Google Scholar
Subbarao GV, Nakahara K, Hurtado MP, Ono H, Moreta DE, Salcedo AF, Yoshihashi AT, Ishikawa T, Ishitani M, Ohnishi-Kameyama M, Yoshida M, Rondon M, Rao IM, Lascano CE, Berry WL, Ito O (2009) Evidence for biological nitrification inhibition in Brachiaria pastures. Proc Natl Acad Sci USA 106:17302–17307. https://doi.org/10.1073/pnas.0903694106
Article
PubMed
PubMed Central
Google Scholar
Sylvester Bradley R, Mosquera D, Méndez JE (1988) Inhibition of nitrate accumulation in tropical grassland soils: effect of nitrogen fertilization and soil disturbance. J Soil Sci 39:407–416. https://doi.org/10.1111/j.1365-2389.1988.tb01226.x
CAS
Article
Google Scholar
Thion CE, Poirel JD, Cornulier T, de Vries FT, Bardgett RD, Prosser JI (2016) Plant nitrogen-use strategy as a driver of rhizosphere archaeal and bacterial ammonia oxidiser abundance. FEMS Microbiol Ecol 92:1–11. https://doi.org/10.1093/femsec/fiw091
CAS
Article
Google Scholar
Vázquez E, Teutscherova N, Dannenmann M, Töchterle P, Butterbach-Bahl K, Pulleman M, Arango J (2020) Gross nitrogen transformations in tropical pasture soils as affected by Urochloa genotypes differing in biological nitrification inhibition (BNI) capacity. Soil Biol Biochem 151:108058. https://doi.org/10.1016/j.soilbio.2020.108058
CAS
Article
Google Scholar
Verhagen FJM, Duyts H, Laanbroek HJ (1992) Competition for ammonium between nitrifying and heterotrophic bacteria in continuously percolated soil columns. Appl Environ Microb 58:3303–3311. https://aem.asm.org/content/58/10/3303.short
Ward BB, Courtney KJ, Langenheim JH (1997) Inhibition of Nitrosomonas europaea by monoterpenes from Coastal Redwood (Sequoia sempervirens) in whole-cell studies. J Chem Ecol 23:2583–2598. https://doi.org/10.1023/B:JOEC.0000006668.48855.b7
CAS
Article
Google Scholar
Wessén E, Söderström M, Stenberg M, Bru D, Hellman M, Welsh A, Thomsen F, Klemedtson L, Philippot L, Hallin S (2011) Spatial distribution of ammonia-oxidizing bacteria and archaea across a 44-hectare farm related to ecosystem functioning. ISME J 5:1213–1225. https://doi.org/10.1038/ismej.2010.206
CAS
Article
PubMed
PubMed Central
Google Scholar
White C (1991) The role of monoterpenes in soil nitrogen cycling processes in ponderosa pine. Biogeochemistry 12. https://doi.org/10.1007/BF00002625
Xiao R, Qiu Y, Tao J, Zhang X, Chen H, Reberg-Horton SC, Shi W, Shew HD, Zhang Y, Hu S (2020) Biological controls over the abundances of terrestrial ammonia oxidizers. Global Ecol Biogeogr 29:384–399. https://doi.org/10.1111/geb.13030
Article
Google Scholar
Zhalnina K, Dias R, de Quadros PD, Davis-Richardson A, Camargo FAO, Clark IM, McGrath SP, Hirsch PR, Triplett EW (2015) Soil pH determines microbial diversity and composition in the park grass experiment. Microb Ecol 69:395–406. https://doi.org/10.1007/s00248-014-0530-2
CAS
Article
PubMed
Google Scholar
Zhang L-M, Hu H-W, Shen J-P, He J-Z (2012) Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J 6:1032–1045. https://doi.org/10.1038/ismej.2011.168
CAS
Article
PubMed
Google Scholar
Zhang K, Chen L, Li Y, Brookes PC, Xu J, Luo Y (2017) The effects of combinations of biochar, lime, and organic fertilizer on nitrification and nitrifiers. Biol Fert Soils 53:77–87. https://doi.org/10.1007/s00374-016-1154-0
CAS
Article
Google Scholar
Zhang J, Cai Z, Müller C (2018) Terrestrial N cycling associated with climate and plant-specific N preferences: a review. Eur J Soil Sci 69:488–501. https://doi.org/10.1111/ejss.12533
CAS
Article
Google Scholar
Zhao W, Zhang J-b, Müller C, Cai Z-c (2018) Effects of pH and mineralisation on nitrification in a subtropical acid forest soil. Soil Res 56:275. https://doi.org/10.1071/SR17087
CAS
Article
Google Scholar