Agerer R (Ed.) (1987) Colour atlas of ectomycorrhizae: with glossary. Delivery 2: 1st-5th ed., Einhorn-Verlag Dietenberger, Schwäbisch Gmünd, Germany.
Agerer R (2001) Exploration types of ectomycorrhizae. Mycorrhiza 11:107–114. https://doi.org/10.1007/s005720100108
Article
Google Scholar
Allison SD, Hanson CA, Treseder KK (2007) Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems. Soil Biol Biochem 39:1878–1887. https://doi.org/10.1016/j.soilbio.2007.02.001
CAS
Article
Google Scholar
Almeida JP, Rosenstock NP, Forsmark B, Bergh J, Wallander H (2019) Ectomycorrhizal community composition and function in a spruce forest transitioning between nitrogen and phosphorus limitation. Fungal Ecol 40:20–31. https://doi.org/10.1016/j.funeco.2018.05.008
Article
Google Scholar
Amend AS, Martiny AC, Allison SD, Berlemont R, Goulden ML, Lu Y, Treseder KK, Weihe C, Martiny JBH (2016) Microbial response to simulated global change is phylogenetically conserved and linked with functional potential. ISME J 10:109–118. https://doi.org/10.1038/ISMEJj.2015.96
CAS
Article
PubMed
Google Scholar
Augusto L, Achat DL, Jonard M, Vidal D, Ringeval B (2017) Soil parent material—a major driver of plant nutrient limitations in terrestrial ecosystems. Glob Chang Biol 23:3808–3824. https://doi.org/10.1111/gcb.13691
Article
PubMed
Google Scholar
Avis PG, McLaughlin DJ, Dentinger BC, Reich PB (2003) Long-term increase in nitrogen supply alters above- and below-ground ectomycorrhizal communities and increases the dominance of Russula spp. in a temperate oak savanna. New Phytol 160:239–253. https://doi.org/10.1046/j.1469-8137.2003.00865.x
Article
PubMed
Google Scholar
Avis PG (2012) Ectomycorrhizal iconoclasts: the ITS rDNA diversity and nitrophilic tendencies of fetid Russula. Mycologia 104:998–1007. https://doi.org/10.3852/11-399
CAS
Article
PubMed
Google Scholar
Awad A, Majcherczyk A, Schall P, Schöning SK, I, Schrumpf M, Ehbrecht M, Boch S, Kahl T, Bauhus J, Seidel D, Ammer C, Fischer M, Kües U, Pena R, (2019) Ectomycorrhizal and saprotrophic soil fungal biomass are driven by different factors and vary among broadleaf and coniferous temperate forests. Soil Biol Biochem 131:9–18. https://doi.org/10.1016/j.soilbio.2018.12.014
CAS
Article
Google Scholar
Bahnmann B, Mašínová T, Halvorsen R, Davey ML, Sedlák P, Tomšovský M, Baldrian P (2018) Effects of oak, beech and spruce on the distribution and community structure of fungi in litter and soils across a temperate forest. Soil Biol Biochem 119:162–173. https://doi.org/10.1016/j.soilbio.2018.01.021
CAS
Article
Google Scholar
Bahr A, Ellström M, Akselsson C, Ekblad A, Mikusinska A, Wallander H (2013) Growth of ectomycorrhizal fungal mycelium along a Norway spruce forest nitrogen deposition gradient and its effect on nitrogen leakage. Soil Biol Biochem 59:38–48. https://doi.org/10.1016/j.soilbio.2013.01.004
CAS
Article
Google Scholar
Bahr A, Ellström M, Bergh J, Wallander H (2015) Nitrogen leaching and ectomycorrhizal nitrogen retention capacity in a Norway spruce forest fertilized with nitrogen and phosphorus. Plant Soil 390:323–335. https://doi.org/10.1007/s11104-015-2408-6
CAS
Article
Google Scholar
Baldrian P (2017) Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol Rev 41:109–130. https://doi.org/10.1093/femsre/fuw040
CAS
Article
PubMed
Google Scholar
Bergkemper F, Welzl G, Lang F, Krüger J, Schloter M, Schulz S (2016) The importance of C, N and P as driver for bacterial community structure in German beech dominated forest soils. J Plant Nutr Soil Sci 179:472–480. https://doi.org/10.1002/jpln.201600077
CAS
Article
Google Scholar
Bödeker ITM, Clemmensen KE, de Boer W, Martin F, Olson Å, Lindahl BD (2014) Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. New Phytol 203:245–256. https://doi.org/10.1111/nph.12791
CAS
Article
PubMed
PubMed Central
Google Scholar
Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:39–46. https://doi.org/10.1097/00010694-194501000-00006
CAS
Article
Google Scholar
Buée M, Vairelles D, Garbaye J (2005) Year-round monitoring of diversity and potential metabolic activity of the ectomycorrhizal community in a beech (Fagus silvatica) forest subjected to two thinning regimes. Mycorrhiza 15:235–245. https://doi.org/10.1007/s00572-004-0313-6
Article
PubMed
Google Scholar
Castaño C, Lindahl BD, Alday JG, Hagenbo A, Martínez de Aragón J, Parladé J, Pera J, Bonet JA (2018) Soil microclimate changes affect soil fungal communities in a Mediterranean pine forest. New Phytol 220:1211–1221. https://doi.org/10.1111/nph.15205
Article
PubMed
Google Scholar
Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715. https://doi.org/10.1111/j.1461-0248.2009.01314.x
Article
PubMed
Google Scholar
Chase JM (2007) Drought mediates the importance of stochastic community assembly. Proc Natl Acad Sci USA 104:17430–17434. https://doi.org/10.1073/pnas.0704350104
Article
PubMed
PubMed Central
Google Scholar
Cheng Y, Wang J, Chang SX, Cai Z, Müller C, Zhang J (2019) Nitrogen deposition affects both net and gross soil nitrogen transformations in forest ecosystems: a review. Environ Pollut 244:608–616. https://doi.org/10.1016/j.envpol.2018.10.054
CAS
Article
PubMed
Google Scholar
Clausing S, Polle A (2020) Mycorrhizal phosphorus efficiencies and microbial competition drive root P uptake. Front for Glob Change 3:54. https://doi.org/10.3389/ffgc.2020.00054
Article
Google Scholar
Clausing S, Pena R, Song B, Müller K, Mayer-Gruner P, Marhan S, Gräfe M, Schulz S, Krüger J, Lang F, Schloter M, Kandeler E, Polle A (2021) Carbohydrate depletion impedes phosphorus nutrition of young forest trees. New Phytol 5:2611–2624. https://doi.org/10.1111/nph.17058
CAS
Article
Google Scholar
Courty P-E, Buée M, Diedhiou AG, Frey-Klett P, Le Tacon F, Rineau F, Turpault M-P, Uroz S, Garbaye J (2010) The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol Biochem 42:679–698. https://doi.org/10.1016/j.soilbio.2009.12.006
CAS
Article
Google Scholar
Cox F, Barsoum N, Lilleskov EA, Bidartondo MI (2010) Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients. Ecol Lett 13:1103–1113. https://doi.org/10.1111/j.1461-0248.2010.01494.x
Article
PubMed
Google Scholar
de Vries W, Du E, Butterbach-Bahl K (2014) Short and long-term impacts of nitrogen deposition on carbon sequestration by forest ecosystems. Curr Opin Environ Sustain 9–10:90–104. https://doi.org/10.1016/j.cosust.2014.09.001
Article
Google Scholar
de Witte LC, Rosenstock NP, van der Linde S, Braun S (2017) Nitrogen deposition changes ectomycorrhizal communities in Swiss beech forests. Sci Total Environ 605:1083–1096. https://doi.org/10.1016/j.scitotenv.2017.06.142
CAS
Article
PubMed
Google Scholar
Deng Q, McMahon DE, Xiang Y, Yu C-L, Jackson RB, Hui D (2016) A global meta-analysis of soil phosphorus dynamics after afforestation. New Phytol 213:181–192. https://doi.org/10.1111/nph.14119
CAS
Article
PubMed
Google Scholar
Du E, De Vries W (2018) Nitrogen-induced new net primary production and carbon sequestration in global forests. Environ Pollut 242:1476–1487. https://doi.org/10.1016/j.envpol.2018.08.041
CAS
Article
PubMed
Google Scholar
Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142. https://doi.org/10.1111/j.1461-0248.2007.01113.x
Article
PubMed
Google Scholar
Etzold S, Ferretti M, Reinds GJ, Solberg S, Gessler A, Waldner P, Schaub M, Simpson D, Benham S, Hansen K, Ingerslev M, Jonard M, Karlsson PE, Lindroos A-J, Marchetto A, Manninger M, Meesenburg H, Merilä P, Nöjd P, Rautio P, Sanders TGM, Seidling W, Skudnik M, Thimonier A, Verstraeten A, Vesterdal L, Vejpustkova M, de Vries W (2020) Nitrogen deposition is the most important environmental driver of growth of pure, even-aged and managed European forests. For Ecol Manag 458:117762. https://doi.org/10.1016/j.foreco.2019.117762
Article
Google Scholar
Forsmark B, Wallander H, Nordin A, Gundale MJ (2021) Long-term nitrogen enrichment does not increase microbial phosphorus mobilization in a northern coniferous forest. Funct Ecol 35:277–287. https://doi.org/10.1111/1365-2435.13701
Article
Google Scholar
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 320:889–892. https://doi.org/10.1126/science.1136674
CAS
Article
PubMed
PubMed Central
Google Scholar
Geer LY, Marchler-Bauer A, Geer RC, Han L, He J, He S, Liu C, Shi W, Bryant SH (2010) Nucleic Acids Res 38(suppl_1): D492–D496. https://doi.org/10.1093/nar/gkp858
Glassman SI, Wang IJ, Bruns TD (2017) Environmental filtering by pH and soil nutrients drives community assembly in fungi at fine spatial scales. Mol Ecol 26:6960–6973. https://doi.org/10.1111/mec.14414
CAS
Article
PubMed
Google Scholar
Goldmann K, Schröter K, Pena R, Schöning I, Schrumpf M, Buscot F, Polle A (2016) Divergent habitat filtering of root and soil fungal communities in temperate beech forests. Sci Rep 6:31439. https://doi.org/10.1038/srep31439
CAS
Article
PubMed
PubMed Central
Google Scholar
Gonzales K, Yanai R (2019) Nitrogen–phosphorous interactions in young northern hardwoods indicate P limitation: foliar concentrations and resorption in a factorial N by P addition experiment. Oecologia 189:829–840. https://doi.org/10.1007/s00442-019-04350-y
Article
PubMed
Google Scholar
Heinrichs H, Brumsack H-J, Loftfield N, König N (1986) Verbessertes Druckaufschlußsystem für biologische und anorganische Materialien. Zeitschrift Für Pflanzenernährung Und Bodenkunde 149:350–353. https://doi.org/10.1002/jpln.19861490313
CAS
Article
Google Scholar
Ho NT, Li F, Wang S, Kuhn L (2019) MetamicrobiomeR: an R package for analysis of microbiome relative abundance data using zero-inflated beta GAMLSS and meta-analysis across studies using random effects models. BMC Bioinform 20:188. https://doi.org/10.1186/s12859-019-2744-2
Article
Google Scholar
Hobbie EA, Agerer R (2010) Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types. Plant Soil 327:71–83. https://doi.org/10.1007/s11104-009-0032-z
CAS
Article
Google Scholar
Högberg P, Näsholm T, Franklin O, Högberg MN (2017) Tamm review: on the nature of the nitrogen limitation to plant growth in Fennoscandian boreal forests. For Ecol Manag 403:161–185. https://doi.org/10.1016/j.foreco.2017.04.045
Article
Google Scholar
Högberg MN, Skyllberg U, Högberg P, Knicker H (2020) Does ectomycorrhiza have a universal key role in the formation of soil organic matter in boreal forests? Soil Biol Biochem 140:107635. https://doi.org/10.1016/j.soilbio.2019.107635
CAS
Article
Google Scholar
ISO 10390 (2005) Soil quality - determination of pH, International Organization for Standardization.
Iwański M, Rudawska M (2007) Ectomycorrhizal colonization of naturally regenerating Pinus sylvestris L. seedlings growing in different micro-habitats in boreal forest. Mycorrhiza 17:461–467. https://doi.org/10.1007/s00572-007-0132-7
Article
PubMed
Google Scholar
Jonard M, Fürst A, Verstraeten A, Thimonier A, Timmermann V, Potočić N, Waldner P, Benham S, Hansen K, Merilä P, Ponette Q, de la Cruz AC, Roskams P, Nicolas M, Croisé L, Ingerslev M, Matteucci G, Decinti B, Bascietto M, Rautio P (2015) Tree mineral nutrition is deteriorating in Europe. Glob Chang Biol 21:418–430. https://doi.org/10.1111/gcb.12657
Article
PubMed
Google Scholar
Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F, Canbäck B, Choi C, Cichocki N, Clum A, Colpaert J, Copeland A, Costa MD, Doré J, Floudas D, Gay G, Girlanda M, Henrissat B, Herrmann S, Hess J, Högberg N, Johansson T, Khouja H-R, LaButti K, Lahrmann U, Levasseur A, Lindquist EA, Lipzen A, Marmeisse R, Martino E, Murat C, Ngan CY, Nehls U, Plett JM, Pringle A, Ohm RA, Perotto S, Peter M, Riley R, Rineau F, Ruytinx J, Salamov A, Shah F, Sun H, Tarkka M, Tritt A, Veneault-Fourrey C, Zuccaro A, Tunlid A, Grigoriev IV, Hibbett DS, Martin F (2015) Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47:410–415. https://doi.org/10.1038/ng.3223
CAS
Article
PubMed
PubMed Central
Google Scholar
Köhler J, Yang N, Pena R, Raghavan V, Polle A, Meier IC (2018) Ectomycorrhizal fungal diversity increases P uptake efficiency of European beech. New Phytol 220:1200–1210. https://doi.org/10.1111/nph.15208
Article
PubMed
Google Scholar
Kolaříková Z, Kohout P, Krüger C, Janoušková M, Mrnka L, Rydlová J (2017) Root-associated fungal communities along a primary succession on a mine spoil: distinct ecological guilds assemble differently. Soil Biol Biochem 113:143–152. https://doi.org/10.1016/j.soilbio.2017.06.004
CAS
Article
Google Scholar
Kottke I, Qian XM, Pritsch K, Haug I, Oberwinkler F (1998) Xerocomus badius – Picea abies, an ectomycorrhiza of high activity and element storage capacity in acidic soil. Mycorrhiza 7:267–275. https://doi.org/10.1007/s005720050191
CAS
Article
PubMed
Google Scholar
Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Scott JA, Senés C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiss M, Larsson K-H (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277. https://doi.org/10.1111/mec.12481
CAS
Article
PubMed
PubMed Central
Google Scholar
Lambers H, Raven J, Shaver G, Smith S (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103. https://doi.org/10.1016/j.tree.2007.10.008
Article
PubMed
Google Scholar
Lang C, Seven J, Polle A (2011) Host preferences and differential contributions of deciduous tree species shape mycorrhizal species richness in a mixed Central European forest. Mycorrhiza 21:297–308. https://doi.org/10.1007/s00572-010-0338-y
Article
PubMed
Google Scholar
Lang F, Krüger J, Amelung W, Willbold S, Frossard E, Bünemann EK, Bauhus J, Nitschke R, Kandeler E, Marhan S, Schulz S, Bergkemper F, Schloter M, Luster J, Guggisberg F, Kaiser K, Mikutta R, Guggenberger G, Polle A, Pena R, Prietzel J, Rodionov A, Talkner U, Meesenburg H, von Wilpert K, Hölscher A, Dietrich HP, Chmara I (2017) Soil phosphorus supply controls P nutrition strategies of beech forest ecosystems in Central Europe. Biogeochemistry 136:5–29. https://doi.org/10.1007/s10533-017-0375-0
CAS
Article
Google Scholar
Li J, Li Z, Wang F, Zou B, Chen Y, Zhao J, Mo Q, Li Y, Li X, Xia H (2015) Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China. Biol Fertil Soils 51:207–215. https://doi.org/10.1007/s00374-014-0964-1
CAS
Article
Google Scholar
Lilleskov EA, Fahey TJ, Horton TR, Lovett GM (2002) Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 83:104–115. https://doi.org/10.1890/0012-9658(2002)083[0104:BEFCCO]2.0.CO;2
Article
Google Scholar
Lilleskov EA, Wargo PM, Vogt KA, Vogt DJ (2008) Mycorrhizal fungal community relationship to root nitrogen concentration over a regional atmospheric nitrogen deposition gradient in the northeastern USA. Can J for Res 38:1260–1266. https://doi.org/10.1139/X07-211
CAS
Article
Google Scholar
Lilleskov EA, Kuyper TW, Bidartondo MI, Hobbie EA (2019) Atmospheric nitrogen deposition impacts on the structure and function of forest mycorrhizal communities: a review. Environ Pollut 246:148–162. https://doi.org/10.1016/j.envpol.2018.11.074
CAS
Article
PubMed
Google Scholar
Lindahl BD, Tunlid A (2015) Ectomycorrhizal fungi - potential organic matter decomposers, yet not saprotrophs. New Phytol 205:1443–1447. https://doi.org/10.1111/nph.13201
CAS
Article
PubMed
Google Scholar
Liu L, Zhang T, Gilliam FS, Gundersen P, Zhang W, Chen H, Mo J (2013) Interactive effects of nitrogen and phosphorus on soil microbial communities in a tropical forest. PLoS ONE 8:e61188. https://doi.org/10.1371/journal.pone.0061188
CAS
Article
PubMed
PubMed Central
Google Scholar
López-Mondéjar R, Brabcová V, Štursová M, Davidová A, Jansa J, Cajthaml T, Baldrian P (2018) Decomposer food web in a deciduous forest shows high share of generalist microorganisms and importance of microbial biomass recycling. ISME J 12:1768–1778. https://doi.org/10.1038/s41396-018-0084-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Maaroufi NI, Nordin A, Palmqvist K, Hasselquist NJ, Forsmark B, Rosenstock NP, Wallander H, Gundale MJ (2019) Anthropogenic nitrogen enrichment enhances soil carbon accumulation by impacting saprotrophs rather than ectomycorrhizal fungal activity. Glob Chang Biol 25:2900–2914. https://doi.org/10.1111/gcb.14722
Article
PubMed
Google Scholar
Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10. https://doi.org/10.14806/ej.17.1.200
Mason LM, Eagar A, Patel P, Blackwood CB, DeForest JL (2020) Potential microbial bioindicators of phosphorus mining in a temperate deciduous forest. J Appl Microbiol 130:109–122. https://doi.org/10.1111/jam.14761
CAS
Article
PubMed
Google Scholar
Meller S, Frossard E, Luster J (2019) Phosphorus allocation to leaves of beech saplings reacts to soil phosphorus availability. Front Plant Sci 10:744. https://doi.org/10.3389/fpls.2019.00744
Article
PubMed
PubMed Central
Google Scholar
Mellert KH, Göttlein A (2012) Comparison of new foliar nutrient thresholds derived from van den Burg’s literature compilation with established central European references. Eur J for Res 131:1461–1472. https://doi.org/10.1007/s10342-012-0615-8
Article
Google Scholar
Müller K, Kubsch N, Marhan S, Mayer-Gruner P, Nassal P, Schneider D, Daniel R, Piepho H-P, Polle A, Kandeler E (2020) Saprotrophic and ectomycorrhizal fungi contribute differentially to organic P mobilization in beech-dominated forest ecosystems. Front for Glob Change 3:47. https://doi.org/10.3389/ffgc.2020.00047
Article
Google Scholar
Mykrä H, Tolkkinen M, Markkola AM, Pirttilä AM, Muotka T (2016) Phylogenetic clustering of fungal communities in human-disturbed streams. Ecosphere 7:3. https://doi.org/10.1002/ecs2.1316
Article
Google Scholar
Nannipieri P, Penton CR, Purahong W, Schloter M, van Elsas JD (2019) Recommendations for soil microbiome analyses. Biol Fertil Soils 55:765–766. https://doi.org/10.1007/s00374-019-01409-z
Article
Google Scholar
Näsholm T, Högberg P, Franklin O, Metcalfe D, Keel SG, Campbell C, Hurry V, Linder S, Högberg MN (2013) Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? New Phytol 198:214–221. https://doi.org/10.1111/nph.12139
CAS
Article
PubMed
Google Scholar
Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248. https://doi.org/10.1016/j.funeco.2015.06.006
Article
Google Scholar
Nguyen DQ, Schneider D, Brinkmann N, Song B, Janz D, Schöning I, Daniel R, Pena R, Polle A (2020) Soil and root nutrient chemistry structure root-associated fungal assemblages in temperate forests. Environ Microbiol 22:3081–3095. https://doi.org/10.1111/1462-2920.15037
CAS
Article
PubMed
Google Scholar
Nicolás C, Almeida JP, Ellström M, Bahr A, Bone SE, Rosenstock NP, Bargar JR, Tunlid A, Persson P, Wallander H (2017) Chemical changes in organic matter after fungal colonization in a nitrogen fertilized and unfertilized Norway spruce forest. Plant Soil 419:113–126. https://doi.org/10.1007/s11104-017-3324-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, Tedersoo L (2019) Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol 17:95–109. https://doi.org/10.1038/s41579-018-0116-y
CAS
Article
PubMed
Google Scholar
Oksanen J, Blanchet F G, Kindt R, Legendre P, Minchin P R, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2019) Package ‘Vegan’. Community Ecology Package, Version 2. Available at: http://CRAN.R-project.org/package=vegan
Ollivier J, Töwe S, Bannert A, Hai B, Kastl E-M, Meyer A, Su MX, Kleineidam K, Schloter M (2011) Nitrogen turnover in soil and global change: key players of soil nitrogen cycle. FEMS Microbiol Ecol 78:3–16. https://doi.org/10.1111/j.1574-6941.2011.01165.x
CAS
Article
PubMed
Google Scholar
Op De Beeck M, Troein C, Peterson C, Persson P, Tunlid A (2018) Fenton reaction facilitates organic nitrogen acquisition by an ectomycorrhizal fungus. New Phytol 218:335–343. https://doi.org/10.1111/nph.14971
CAS
Article
PubMed
PubMed Central
Google Scholar
Pastore G, Kernchen S, Spohn M (2020) Microbial solubilization of silicon and phosphorus from bedrock in relation to abundance of phosphorus-solubilizing bacteria in temperate forest soils. Soil Biol Biochem 151:108050. https://doi.org/10.1016/j.soilbio.2020.108050
CAS
Article
Google Scholar
Pausas JG, Verdú M (2010) The jungle of methods for evaluating phenotypic and phylogenetic structure of communities. Bioscience 60:614–625. https://doi.org/10.1525/bio.2010.60.8.7
Article
Google Scholar
Peay KG, Kennedy PG, Talbot JM (2016) Dimensions of biodiversity in the earth mycobiome. Nat Rev Microbiol 14:434–447. https://doi.org/10.1038/nrmicro.2016.59
CAS
Article
PubMed
Google Scholar
Pena R, Lang C, Lohaus G, Boch S, Schall P, Schöning I, Ammer C, Fischer M, Polle A (2017) Phylogenetic and functional traits of ectomycorrhizal assemblages in top soil from different biogeographic regions and forest types. Mycorrhiza 27:233–245. https://doi.org/10.1007/s00572-016-0742-z
Article
PubMed
Google Scholar
Peñuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Bopp L, Boucher O, Godderis Y, Hinsinger P, Llusia J, Nardin E, Vicca S, Obersteiner M, Janssens IA (2013) Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat Commun 4:2934. https://doi.org/10.1038/ncomms3934
CAS
Article
PubMed
Google Scholar
Peršoh D, Stolle N, Brachmann A, Begerow D, Rambold G (2018) Fungal guilds are evenly distributed along a vertical spruce forest soil profile while individual fungi show pronounced niche partitioning. Mycol Prog 17:925–939. https://doi.org/10.1007/s11557-018-1405-6
Article
Google Scholar
Phillips LA, Ward V, Jones MD (2014) Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests. ISME J 8:699–713. https://doi.org/10.1038/ISMEJj.2013.195
CAS
Article
Google Scholar
Powell J, Parrent J, Hart M, Klironomos J, Rillig M, Maherali H (2009) Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proc Royal Soc b: Biol Sci 76:4237–4245. https://doi.org/10.1098/rspb.2009.1015
Article
Google Scholar
Pritsch K, Garbaye J (2011) Enzyme secretion by ECM fungi and exploitation of mineral nutrients from soil organic matter. Ann for Sci 68:25–32. https://doi.org/10.1007/s13595-010-0004-8
Article
Google Scholar
Purahong W, Wubet T, Kahl T, Arnstadt T, Hoppe B, Lentendu G, Baber K, Rose T, Kellner H, Hofrichter M, Bauhus J, Krüger D, Buscot F (2018) Increasing N deposition impacts neither diversity nor functions of deadwood-inhabiting fungal communities, but adaptation and functional redundancy ensure ecosystem function: N deposition in highly N-limited habitat. Environ Microbiol 20:1693–1710. https://doi.org/10.1111/1462-2920.14081
CAS
Article
PubMed
Google Scholar
R Core Development Team (2012) R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.r-project.org/
Rigby RA, Stasinopoulos DM (2005) Generalized additive models for location, scale and shape. J R Stat Soc 54:507–554. https://doi.org/10.1111/j.1467-9876.2005.00510.x
Article
Google Scholar
Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. https://doi.org/10.7717/peerj.2584
Article
PubMed
PubMed Central
Google Scholar
Rosling A, Midgley MG, Cheeke T, Urbina H, Fransson P, Phillips RP (2016) Phosphorus cycling in deciduous forest soil differs between stands dominated by ecto- and arbuscular mycorrhizal trees. New Phytol 209:1184–1195. https://doi.org/10.1111/nph.13720
Article
PubMed
Google Scholar
Rotter P, Loreau M, de Mazancourt C (2020) Why do forests respond differently to nitrogen deposition? A Modelling Approach Ecol Model 425:109034. https://doi.org/10.1016/j.ecolmodel.2020.109034
CAS
Article
Google Scholar
Schimel JP, Schaeffer SM (2012) Microbial control over carbon cycling in soil. Front Microbiol 3:348. https://doi.org/10.3389/fmicb.2012.00348
CAS
Article
PubMed
PubMed Central
Google Scholar
Schröter K, Wemheuer B, Pena R, Schöning I, Ehbrecht M, Schall P, Ammer C, Daniel R, Polle A (2019) Assembly processes of trophic guilds in the root mycobiome of temperate forests. Mol Ecol 28:348–364. https://doi.org/10.1111/mec.14887
Article
PubMed
Google Scholar
Schulte-Uebbing L, de Vries W (2018) Global-scale impacts of nitrogen deposition on tree carbon sequestration in tropical, temperate, and boreal forests: a meta-analysis. Glob Chang Biol 24:e416–e431. https://doi.org/10.1111/gcb.13862
Article
PubMed
Google Scholar
Schwede DB, Simpson D, Tan J, Fu JS, Dentener F, Du E, deVries W (2018) Spatial variation of modelled total, dry and wet nitrogen deposition to forests at global scale. Environ Pollut 243:1287–1301. https://doi.org/10.1016/j.envpol.2018.09.084
CAS
Article
PubMed
PubMed Central
Google Scholar
Štursová M, Žifčáková L, Leigh MB, Burgess R, Baldrian P (2012) Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiol Ecol 80:735–746. https://doi.org/10.1111/j.1574-6941.2012.01343.x
CAS
Article
PubMed
Google Scholar
Štursová M, Šnajdr J, Cajthaml T, Bárta J, Šantrůčková H, Baldrian P (2014) When the forest dies: the response of forest soil fungi to a bark beetle-induced tree dieback. ISME J 8:1920–1931. https://doi.org/10.1038/ISMEJj.2014.37
Article
PubMed
PubMed Central
Google Scholar
Suz LM, Barsoum N, Benham S, Dietrich H-P, Fetzer KD, Fischer R, García P, Gehrman J, Kristöfel F, Manninger M, Neagu S, Nicolas M, Oldenburger J, Raspe S, Sánchez G, Schröck HW, Schubert A, Verheyen K, Verstraeten A, Bidartondo MI (2014) Environmental drivers of ectomycorrhizal communities in Europe’s temperate oak forests. Mol Ecol 23:5628–5644. https://doi.org/10.1111/mec.12947
CAS
Article
PubMed
Google Scholar
Taylor A, Martin F, Read, D (2000) Fungal diversity in ectomycorrhizal communities of Norway spruce [Picea abies (L.) Karst.] and beech (Fagus sylvatica L.) along north-south transects in Europe. In: Schulze ED (ed) Carbon and nitrogen cycling in European Forest Ecosystems. Ecological Studies (Analysis and Synthesis), vol 142. Springer, Berlin, pp. 343–365. https://doi.org/10.1007/978-3-642-57219-7_16
Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Põldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pärtel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson K-H, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo L, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, De Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Global diversity and geography of soil fungi. Science 346:1256688. https://doi.org/10.1126/science.1256688
CAS
Article
PubMed
Google Scholar
Toju H, Tanabe AS, Yamamoto S, Sato H (2012) High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 7:e40863. https://doi.org/10.1371/journal.pone.0040863
CAS
Article
PubMed
PubMed Central
Google Scholar
Toju H, Kishida O, Katayama N, Takagi K (2016) Networks depicting the fine-scale co-occurrences of fungi in soil horizons. PLoS ONE 11:e0165987. https://doi.org/10.1371/journal.pone.0165987
CAS
Article
PubMed
PubMed Central
Google Scholar
Treseder KK, Lennon JT (2015) Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev 79:243–262. https://doi.org/10.1128/MMBR.00001-15
CAS
Article
PubMed
PubMed Central
Google Scholar
Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol Appl 20:5–15. https://doi.org/10.1890/08-0127.1
Article
PubMed
PubMed Central
Google Scholar
van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310. https://doi.org/10.1111/j.1461-0248.2007.01139.x
Article
PubMed
Google Scholar
van der Linde S, Suz LM, Orme CDL, Cox F, Andreae H, Asi E, Atkinson B, Benham S, Carroll C, Cools N, De Vos B, Dietrich H-P, Eichhorn J, Gehrmann J, Grebenc T, Gweon HS, Hansen K, Jacob F, Kristöfel F, Lech P, Manninger M, Martin J, Meesenburg H, Merilä P, Nicolas M, Pavlenda P, Rautio P, Schaub M, Schröck H-W, Seidling W, Šrámek V, Thimonier A, Thomsen IM, Titeux H, Vanguelova E, Verstraeten A, Vesterdal L, Waldner P, Wijk S, Zhang Y, Žlindra D, Bidartondo MI (2018) Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558:243–248. https://doi.org/10.1038/s41586-018-0189-9
CAS
Article
PubMed
Google Scholar
von Hoyningen-Huene AJE, Schneider D, Fussmann D, Reimer A, Arp G, Daniel R (2019) Bacterial succession along a sediment porewater gradient at Lake Neusiedl in Austria. Sci Data 6:163. https://doi.org/10.1038/s41597-019-0172-9
CAS
Article
Google Scholar
Wardle DA (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509–513. https://doi.org/10.1126/science.1098778
CAS
Article
PubMed
PubMed Central
Google Scholar
Wardle DA, Jonsson M, Mayor JR, Metcalfe DB (2016) Above-ground and below-ground responses to long-term nutrient addition across a retrogressive chronosequence. J Ecol 104:545–560. https://doi.org/10.1111/1365-2745.12520
CAS
Article
Google Scholar
White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, in: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds) PCR Protocols. Elsevier, Amsterdam, Netherlands, pp. 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
Wubet T, Christ S, Schöning I, Boch S, Gawlich M, Schnabel B, Fischer M, Buscot F (2012) Differences in soil fungal communities between European Beech (Fagus sylvatica L.) dominated forests are related to soil and understory vegetation. PLoS ONE 7:e47500. https://doi.org/10.1371/journal.pone.0047500
Xia Z, Yang J, Sang C, Wang X, Sun L, Jiang P, Wang C, Bai E (2020) Phosphorus reduces negative effects of nitrogen addition on soil microbial communities and functions. Microorganisms 8:1828. https://doi.org/10.3390/microorganisms8111828
CAS
Article
PubMed Central
Google Scholar
Xue C, Hao Y, Pu X, Ryan Penton C, Wang Q, Zhao M, Zhang B, Ran W, Huang Q, Shen Q, Tiedje JM (2019) Effect of LSU and ITS genetic markers and reference databases on analyses of fungal communities. Biol Fertil Soils 55:79–88. https://doi.org/10.1007/s00374-018-1331-4
CAS
Article
Google Scholar
Zanne AE, Abarenkov K, Afkhami ME, Aguilar-Trigueros CA, Bates S, Bhatnagar JM, Busby PE, Christian N, Cornwell W, Crowther TW, Moreno HF, Floudas D, Gazis R, Hibbett D, Kennedy P, Lindner DL, Maynard DS, Milo AM, Nilsson H, Powell J, Schildhauer M, Schilling J, Treseder KK (2020) Fungal functional ecology: bringing a trait-based approach to plant-associated fungi. Biol Rev 95:409–433. https://doi.org/10.1111/brv.12570
Article
PubMed
Google Scholar
Zavišić A, Nassal P, Yang N, Heuck C, Spohn M, Marhan S, Pena R, Kandeler E, Polle A (2016) Phosphorus availabilities in beech (Fagus sylvatica L.) forests impose habitat filtering on ectomycorrhizal communities and impact tree nutrition. Soil Biol Biochem 98:127–137. https://doi.org/10.1016/j.soilbio.2016.04.006
CAS
Article
Google Scholar
Zavišić A, Yang N, Marhan S, Kandeler E, Polle A (2018) Forest soil phosphorus resources and fertilization affect ectomycorrhizal community composition, beech P uptake efficiency, and photosynthesis. Front Plant Sci 9:463. https://doi.org/10.3389/fpls.2018.00463
Article
PubMed
PubMed Central
Google Scholar
Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30:614–620. https://doi.org/10.1093/bioinformatics/btt593
CAS
Article
PubMed
Google Scholar
Zhang K, Adams JM, Shi Y, Yang T, Sun R, He D, Ni Y, Chu H (2017) Environment and geographic distance differ in relative importance for determining fungal community of rhizosphere and bulk soil. Environ Microbiol 19:3649–3659. https://doi.org/10.1111/1462-2920.13865
Article
PubMed
Google Scholar