Aulakh MS, Wassmann R, Bueno C, Kreuzwieser J, Rennenberg H (2001) Characterization of root exudates at different growth stages of fen rice (Oryza sativa L.) cultivars. Pant Biol 3:298–298. https://doi.org/10.1055/s-2001-15205
CAS
Article
Google Scholar
Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681. https://doi.org/10.1111/j.1365-3040.2009.01926.x
CAS
Article
Google Scholar
Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19:90–98. https://doi.org/10.1016/j.tplants.2013.11.006
CAS
Article
Google Scholar
Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interations with plants and other organisms. Annu Rev Plant Biol 57:233–266. https://doi.org/10.1146/annurev.arplant.57.032905.105159
CAS
Article
Google Scholar
Brunner I, Herzog C, Dawes MA, Arend M, Sperisen C (2015) How tree roots respond to drought. Front Plant Sci 6. https://doi.org/10.3389/fpls.2015.00547
Canarini A, Kaiser C, Merchant A, Richter A, Wanek W (2019) Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.00157
Cesco S, Neumann G, Tomasi N, Pinton R, Weisskopf L (2010) Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 329:1–25. https://doi.org/10.1007/s11104-009-0266-9
CAS
Article
Google Scholar
Chobot V, Hadacek F, Bachmann G, Weckwerth W, Kubicova L (2016) Pro- and antioxidant activity of three selected flavan type flavonoids: catechin, eriodictyol and taxifolin. Int J Mol Sci 17. https://doi.org/10.3390/ijms17121986
Comas LH, Becker SR, Cruz VV, Byrne PF, Dierig DA (2013) Root traits contributing to plant productivity under drought. Front Plant Sci 4. https://doi.org/10.3389/fpls.2013.00442
Coskun D, Britto DT, Shi WM, Kronzucker HJ (2017a) How plant root exudates shape the nitrogen cycle. Trends Plant Sci 22:661–673. https://doi.org/10.1016/j.tplants.2017.05.004
CAS
Article
Google Scholar
Coskun D, Britto DT, Shi WM, Kronzucker HJ (2017b) Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat Plants 3. doi: https://doi.org/10.1038/nplants.2017.74
Dai AG (2011) Drought under global warming: a review. Wires Clim Change 2:45–65. https://doi.org/10.1002/wcc.81
Article
Google Scholar
Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47. https://doi.org/10.1023/A:1020809400075
CAS
Article
Google Scholar
De La Harpe M, Paris M, Hess J, Barfuss MHJ, Serrano-Serrano ML, Ghatak A, Chaturvedi P, Weckwerth W, Till W, Salamin N, Wai CM, Ming R, Lexer C (2020) Genomic footprints of repeated evolution of CAM photosynthesis in a Neotropical species radiation. Plant Cell Environ 43(12):2987–3001. https://doi.org/10.1111/pce.13847
CAS
Article
Google Scholar
Deng BL, Jin XH, Yang Y, Lin ZW, Zhang YL (2014) The regulatory role of riboflavin in the drought tolerance of tobacco plants depends on ROS production. Plant Growth Regul 72:269–277. https://doi.org/10.1007/s10725-013-9858-8
CAS
Article
Google Scholar
Doornbos RF, van Loon LC, Bakker PAHM (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A Review. Agron Sustain Dev 32:227–243. https://doi.org/10.1007/s13593-011-0028-y
Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212. https://doi.org/10.1051/Agro:2008021
Article
Google Scholar
Gargallo-Garriga A, Preece C, Sardans J, Oravec M, Urban O, Penuelas J (2018) Root exudate metabolomes change under drought and show limited capacity for recovery. Sci Rep 8. https://doi.org/10.1038/s41598-018-30150-0
Ghatak A, Chaturvedi P, Nagler M, Roustan V, Lyon D, Bachmann G, Postl W, Schröfl A, Desai N, Varshney RK, Weckwerth W (2016) Comprehensive tissue-specific proteome analysis of drought stress responses in Pennisetum glaucum (L.) R. Br. (Pearl millet). J Proteomics 143:122–135. https://doi.org/10.1016/j.jprot.2016.02.032
CAS
Article
Google Scholar
Ghatak A, Chaturvedi P, Weckwerth W (2017) Cereal crop proteomics: systemic analysis of crop drought stress responses towards marker-assisted selection breeding. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.00757
Ghatak A, Chaturvedi P, Weckwerth W (2018) Metabolomics in plant stress physiology. Adv Biochem Eng Biotechnol 164:187–236. https://doi.org/10.1007/10_2017_55
CAS
Article
Google Scholar
Ghatak A, Chaturvedi P, Bachmann G, Valledor L, Ramšak Ž, Bazargani MM, Bajaj P, Jegadeesan S, Li W, Sun X, Gruden K, Varshney RK, Weckwerth W (2021) Physiological and proteomic signatures reveal mechanisms of superior drought resilience in pearl millet compared to wheat. Front Plant Sci 13(11):600278. https://doi.org/10.3389/fpls.2020.600278.PMID:33519854;PMCID:PMC7838129
Article
Google Scholar
Goodacre R, Broadhurst D, Smilde AK, Kristal BS, David Baker J, Beger R, Bessant C, Connor S, Capuani G, Craig A, Ebbels T, Kell BK, Manetti C, Newton J, Paternostro G, Somorjai R, Sjöström M, Trygg J, Wulfert F (2007) Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics 3(3):231–241
CAS
Article
Google Scholar
Guhr A, Horn MA, Weig AR (2017) Vitamin B-2 (riboflavin) increases drought tolerance of Agaricus bisporus. Mycologia 109:860–873. https://doi.org/10.1080/00275514.2017.1414544
CAS
Article
Google Scholar
Guyonnet JP, Guillemet M, Dubost A, Simon L, Ortet P, Barakat M, Heulin T, Achouak W, Haichar FEZ (2018) Plant nutrient resource use strategies shape active rhizosphere microbiota through root exudation. Front Plant Sci 9:1662. https://doi.org/10.3389/fpls.2018.01662
Article
PubMed Central
PubMed
Google Scholar
Jha P, Panwar J, Jha PN (2015) Secondary plant metabolites and root exudates: guiding tools for polychlorinated biphenyl biodegradation. Int J Environ Sci Te 12:789–802. https://doi.org/10.1007/s13762-014-0515-1
CAS
Article
Google Scholar
Kusaka M, Lalusin AG, Fujimura T (2005) The maintenance of growth and turgor in pearl millet (Pennisetum glaucum [L.] Leeke) cultivars with different root structures and osmo-regulation under drought stress. Plant Sci 168:1–14. https://doi.org/10.1016/j.plantsci.2004.06.021
CAS
Article
Google Scholar
Macková H, Hronková M, Dobrá J, Turečková V, Novák O, Lubovská Z, Motyka V, Haisel D, Hájek T, Prášil IT, Gaudinová A, Štorchová H, Ge E, Werner T, Schmülling T, Vanková R (2013) Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. J Exp Bot 64:2805–2815. https://doi.org/10.1093/jxb/ert131
CAS
Article
PubMed Central
PubMed
Google Scholar
Mehmood A, Hussain A, Irshad M, Khan N, Hamayun M, Ismail ASG, Lee IJ (2018) IAA and flavonoids modulates the association between maize roots and phytostimulant endophytic Aspergillus fumigatus greenish. J Plant Interact 13(1):532–542. https://doi.org/10.1080/17429145.2018.1542041
CAS
Article
Google Scholar
Mommer L, Kirkegaard J, van Ruijven J (2016) Root-root interactions: towards a rhizosphere framework. Trends in Plant Sci 21:209–217. https://doi.org/10.1016/j.tplants.2016.01.009
CAS
Article
Google Scholar
Munakata R, Larbat R, Duriot L, Olry A, Gavira C, Mignard B, Bourgaud F (2019) Polyphenols from plant roots. Recent Adv Polyphen Res 6:207–236
CAS
Article
Google Scholar
Nakayama T, Uno B (2015) Importance of proton-coupled electron transfer from natural phenolic compounds in superoxide scavenging. Chem Pharm Bull 63:967–973. https://doi.org/10.1248/cpb.c15-00447
CAS
Article
Google Scholar
Nakamura S, Saliou PS, Takahashi M, Ando Y, Subbarao GV (2020) The contribution of root turnover on biological nitrification inhibition and its impact on the ammonia-oxidizing Archaea under Brachiaria cultivations. Agronomy 10:1003. https://doi.org/10.3390/agronomy10071003
CAS
Article
Google Scholar
Nardi P, Laanbroek HJ, Nicol GW, Renella G, Cardinale M, Pietramellara G, Weckwerth W, Trinchera A, Ghatak A, Nannipieri P (2020) Biological nitrification inhibition in the rhizosphere determining interactions and impact on microbioally mediated processes and potential applications. FEMS Microbiol Rev 37:1–35. https://doi.org/10.1093/femsre/fuaa037
CAS
Article
Google Scholar
Obermeyer G, Fragner L, Lang V, Weckwerth W (2013) Dynamic adaption of metabolic pathways during germination and growth of lily pollen tubes after inhibition of the electron transport chain. Plant Physiol 162:1822–1833. https://doi.org/10.1104/pp.113.219857
CAS
Article
PubMed Central
PubMed
Google Scholar
Oburger E, Jones DL (2018) Sampling root exudates - mission impossible? Rhizosphere 6:116–133. https://doi.org/10.1016/j.rhisph.2018.06.004
Article
Google Scholar
Odum HT (1994) Ecological engineering - the necessary use of ecological self-design. Ecol Eng 3:115–118
Google Scholar
Oumar I, Mariac C, Pham JL, Vigouroux Y (2008) Phylogeny and origin of pearl millet (Pennisetum glaucum [L.] R. Br) as revealed by microsatellite loci. Theor Appl Genet 117:489–497. https://doi.org/10.1007/s00122-008-0793-4
CAS
Article
Google Scholar
Pazhamala LT, Chaturvedi P, Bajaj P, Srikanth S, Ghatak A, Chitikineni A, Bellaire A, Hingane A, Kumar CVS, Saxena KB, Weckwerth W, Saxena RK, Varshney RK (2020) Multiomics approach unravels fertility transition in a pigeonpea line for a two-line hybrid system. Plant Genome 13:e20028. https://doi.org/10.1002/tpg2.20028
R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
Google Scholar
Sarr PS, Ando Y, Nakamura S, Deshpande S, Subbarao GV (2020) Sorgoleone release from sorghum roots shapes the composition of nitrifying populations, total bacteria, and archaea and determines the level of nitrification. Biol Fertil Soils 56:145–166. https://doi.org/10.1007/s00374-019-01405-3
Article
Google Scholar
Schonwitz R, Ziegler H (1982) Exudation of water-soluble vitamins and of some carbohydrates by intact roots of maize seedlings (Zea-Mays-L) into a mineral nutrient solution. Pflanzenphysiol 107:7–14. https://doi.org/10.1016/S0044-328x(11)80003-6
Article
Google Scholar
Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell and Environ 25:333–341. https://doi.org/10.1046/j.1365-3040.2002.00754.x
Article
Google Scholar
Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint JP, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12:1290–1306. https://doi.org/10.3390/12071290
CAS
Article
PubMed Central
PubMed
Google Scholar
Strehmel N, Bottcher C, Schmidt S, Scheel D (2014) Profiling of secondary metabolites in root exudates of Arabidopsis thaliana. Phytochemistry 108:35–46. https://doi.org/10.1016/j.phytochem.2014.10.003
CAS
Article
Google Scholar
Subbarao GV, Ishikawa T, Ito O, Nakahara K, Wang HY, Berry WL (2006a) A biolumiuescence assay to detect nitrification inhibitors released from plant roots: a case study with Brachiaria humidicola. Plant Soil 288:101–112. https://doi.org/10.1007/s11104-006-9094-3
CAS
Article
Google Scholar
Subbarao GV, Ito O, Sahrawat KL, Berry WL, Nakahara K, Ishikawa T, Watanabe T, Suenaga K, Rondon M, Rao IM (2006b) Scope and strategies for regulation of nitrification in agricultural systems-challenges and opportunities. Crit Rev Plant Sci 25:303–335. https://doi.org/10.1080/07352680600794232
CAS
Article
Google Scholar
Subbarao GV, Nakahara K, Ishikawa T, Ono H, Yoshida M, Yoshihashi T, Zhu Y, Zakir HAKM, Deshpande SP, Hash CT, Sahrawat KL (2013a) Biological nitrification inhibition (BNI) activity in sorghum and its characterization. Plant Soil 366:243–259. https://doi.org/10.1007/s11104-012-1419-9
CAS
Article
Google Scholar
Subbarao GV, Rondon M, Ito O, Ishikawa T, Rao IM, Nakahara K, Lascano C, Berry WL (2007a) Biological nitrification inhibition (BNI) - is it a widespread phenomenon? Plant Soil 294:5–18. https://doi.org/10.1007/s11104-006-9159-3
CAS
Article
Google Scholar
Subbarao GV, Sahrawat KL, Nakahara K, Rao IM, Ishitani M, Hash CT, Kishii M, Bonnett DG, Berry WL, Lata JC (2013b) A paradigm shift towards low-nitrifying production systems: the role of biological nitrification inhibition (BNI). Ann Bot-London 112:297–316. https://doi.org/10.1093/aob/mcs230
CAS
Article
Google Scholar
Subbarao GV, Tomohiro B, Masahiro K, Osamu I, Samejima H, Wang HY, Pearse SJ, Gopalakrishnan S, Nakahara K, Hossain HAKM, Tsujimoto H, Berry WL (2007b) Can biological nitrification inhibition (BNI) genes from perennial Leymus racemosus (Triticeae) combat nitrification in wheat farming? Plant Soil 299:55–64. https://doi.org/10.1007/s11104-007-9360-z
CAS
Article
Google Scholar
Subbarao GV, Nakahara K, Hurtado MP, Ono H, Moreta DE, Salcedo AF, Yoshihashi T, Ishikawa T, Ishitani M, Ohnishi-Kameyama M, Yoshida M, Rondon M, Rao IM, Lascano CE, Berry WL, Ito O (2009) Evidence for biological nitrification inhibition in Brachiaria pastures. Proc Natl Acad Sci 106:17302–17307
CAS
Article
PubMed
Google Scholar
Subbarao GV, Searchinger TD (2021) A “more ammonium solution” to mitigate nitrogen pollution and boost crop yields Proc. Natl Acad Sci 118(22):e2107576118. https://doi.org/10.1073/pnas.2107576118
CAS
Article
Google Scholar
Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TW, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR (2007) Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3(3):211–221. https://doi.org/10.1007/s11306-007-0082-2
CAS
Article
PubMed Central
PubMed
Google Scholar
Sun L, Lu YF, Yu FW, Kronzucker HJ, Shi WM (2016) Biological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiency. New Phytol 212:646–656. https://doi.org/10.1111/nph.14057
CAS
Article
Google Scholar
Sun X, Weckwerth W (2012) COVAIN: a toolbox for uni- and multivariate statistics, time-series and correlation network analysis and inverse estimation of the differential Jacobian from metabolomics covariance data. Metabolomics 8:81–93. https://doi.org/10.1007/s11306-012-0399-3
CAS
Article
Google Scholar
Teale WD, Ditengou FA, Dovzhenko AD, Li X, Molendijk AM, Ruperti B, Paponov I, Palme K (2008) Auxin as a model for the integration of hormonal signal processing and transduction. Mol Plant 1(2):229–237. https://doi.org/10.1093/mp/ssn006
CAS
Article
Google Scholar
Valentinuzzi F, Cesco S, Tomasi N, Mimmo T (2015) Influence of different trap solutions on the determination of root exudates in Lupinus albus L. Biol Fert Soils 51:757–765. https://doi.org/10.1007/s00374-015-1015-2
CAS
Article
Google Scholar
van Dam NM, Bouwmeester HJ (2016) Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends in Plant Sci 21:256–265. https://doi.org/10.1016/j.tplants.2016.01.008
CAS
Article
Google Scholar
Varshney RK, Shi C, Thudi M, Mariac C, Wallace J, Qi P, Zhang H, Zhao Y, Wang X, Rathore A, Srivastava RK, Chitikineni A, Fan G, Bajaj P, Punnuri S, Gupta SK, Wang H, Jiang Y, Couderc M, Katta MAVSK, Paudel DR, Mungra KD, Chen W, Harris-Shultz KR, Garg V, Desai N, Doddamani D, Kane NA, Conner JA, Ghatak A, Chaturvedi P, Subramaniam S, Yadav OP, Berthouly-Salazar C, Hamidou F, Wang J, Liang X, Clotault J, Upadhyaya HD, Cubry P, Rhoné B, Gueye MC, Sunkar R, Dupuy C, Sparvoli F, Cheng S, Mahala RS, Singh B, Yadav RS, Lyons E, Datta SK, Hash CT, Devos KM, Buckler E, Bennetzen JL, Paterson AH, Ozias-Akins P, Grando S, Wang J, Mohapatra T, Weckwerth W, Reif JC, Liu X, Vigouroux Y, Xu X (2017) Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat Biotechnol 35(10):969–976. https://doi.org/10.1038/nbt.3943
CAS
Article
PubMed Central
PubMed
Google Scholar
Waraich EA, Ahmad R, Saifullah AMY, Ehsanullah, (2011) Role of mineral nutrition in alleviation of drought stress in plants. Aust J Crop Sci 5:764–777
CAS
Google Scholar
Weckwerth W, Ghatak A, Bellaire A, Chaturvedi P, Varshney RK (2020) PANOMICS meets germplasm. Plant Biotechnol J 18:1507–1525. https://doi.org/10.1111/pbi.13372
CAS
Article
PubMed Central
PubMed
Google Scholar
Weckwerth W, Wenzel K, Fiehn O (2004) Process for the integrated extraction identification, and quantification of metabolites, proteins and RNA to reveal their co-regulation in biochemical networks. Proteomics 4:78–83. https://doi.org/10.1002/pmic.200200500
CAS
Article
Google Scholar
Weir TL, Park SW, Vivanco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7:472–479. https://doi.org/10.1016/j.pbi.2004.05.007
CAS
Article
Google Scholar
Williams A, de Vries FT (2020) Plant root exudation under drought: implications for ecosystem functioning. New Phytol 225:1899–1905. https://doi.org/10.1111/nph.16223
Article
Google Scholar
Xu Y, Burgess P, Huang BR (2017) Transcriptional regulation of hormone-synthesis and signaling pathways by overexpressing cytokinin-synthesis contributes to improved drought tolerance in creeping bentgrass. Physiol Plantarum 161:235–256. https://doi.org/10.1111/ppl.12588
CAS
Article
Google Scholar
Yuan J, Zhang N, Huang QW, Raza W, Li R, Vivanco JM, Shen QR (2015) Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Sci Rep 5. https://doi.org/10.1038/srep13438