Skip to main content

Impact of prolonged rice cultivation on coupling relationship among C, Fe, and Fe-reducing bacteria over a 1000-year paddy soil chronosequence

Abstract

Long-term soil chronosequences are valuable model systems for investigating pedogenesis and investigating the process of element coupling. Here, we assessed the coupling relationships among C, Fe, and Fe-reducing bacteria (Anaeromyxobacter, Geobacter, and Shewanella) in a paddy soil chronosequence of approximately 50 to 1000 years. Soils of the chronosequence originated from tidal marsh under nearly identical landscape and climate conditions. During 1000 years of rice cultivation, soil organic carbon (SOC) contents in surface horizons (0–20 cm) increased from 10.4 to 21.8 g kg−1. In contrast, total Fe contents declined from 59.6 to 45.1 g kg−1 during the initial 50 years of paddy rice cultivation and then further decreased at a low rate of 0.004 g kg−1 soil year−1 (equivalent to 10 kg ha−1 soil year−1). Organically complexed Fe oxides (Fep) increased from 219 to 642 mg g−1 with increasing time of pedogenesis, but free total Fe oxides (Fed) and amorphous Fe oxides (Feo) declined at early stage of soil development, followed by a slow accumulation at later stages of the chronosequence. Gene copy numbers of Anaeromyxobacter and Geobacter increased from 4.6 × 105 and 3.6 × 106 copies g−1 to 3.8 × 107 and 3.6 × 107 copies g−1 dry soil with continuous paddy rice cultivation, while concurrently Shewanella gene abundance decreased gradually from 4.5 × 105 to 9.3 × 104 copies g−1 dry soil. Using structural equation modeling (SEM), different coupling relationships were observed among C, Fe, and Fe-reducing bacteria for the first 300 years of paddy chronosequence and thereafter. Overall, all Fe-reducing bacteria did not show consistent variation. With the stable microbial community and iron oxide fractions, the microbially mediated dissimilatory coupling relationship between C and Fe becomes simple during 1000 years of paddy soil development.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Atere CT, Ge T, Zhu Z, Tong C, Jones DL, Shibistova O, Guggenberger G, Wu J (2017) Rice rhizodeposition and carbon stabilisation in paddy soil are regulated via drying-rewetting cycles and nitrogen fertilisation. Biol Fert Soils 53:407–417

    Article  CAS  Google Scholar 

  • Biddle JF, Fitz-Gibbon S, Schuster SC, Brenchley JE, House CH (2008) Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc Natl Acad Sci U S A 105:10583–10588

    Article  PubMed  PubMed Central  Google Scholar 

  • Blume HP, Schwertmann U (1969) Genetic evaluation of profile distribution of aluminum, iron, and manganese oxides 1. Soil Sci Soc Am J 33:438–444

    Article  CAS  Google Scholar 

  • Boyd PW, Ellwood MJ (2010) The biogeochemical cycle of iron in the ocean. Nat Geosci 3:675–682

    Article  CAS  Google Scholar 

  • Burgin AJ, Yang WH, Hamilton SK, Silver WL (2011) Beyond carbon and nitrogen: how the microbial energy economy couples elemental cycles in diverse ecosystems. Front Ecol Environ 9:44–52

    Article  Google Scholar 

  • Canfield DE, Jorgensen BB, Fossing H, Glud R, Gundersen J, Ramsing NB, Thamdrup B, Hansen JW, Nielsen LP, Hall PO (1993) Pathways of organic carbon oxidation in three continental margin sediments. Mar Geol 113:27–40

    Article  CAS  PubMed  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter MR, Gregorich EG (2007) Soil sampling and methods of analysis, Second edn. CRC Press, Boca Raton

    Google Scholar 

  • Chen J, Sun X, Zheng J, Zhang X, Liu X, Bian R, Li L, Cheng K, Zheng J, Pan G (2018) Biochar amendment changes temperature sensitivity of soil respiration and composition of microbial communities 3 years after incorporation in an organic carbon-poor dry cropland soil. Biol Fert Soils 54:175–188

    Article  CAS  Google Scholar 

  • Chen J, Chen D, Xu Q, Fuhrmann JJ, Li L, Pan G, Li Y, Qin H, Liang C, Sun X (2019) Organic carbon quality, composition of main microbial groups, enzyme activities, and temperature sensitivity of soil respiration of an acid paddy soil treated with biochar. Biol Fert Soils 55:185–197

    Article  CAS  Google Scholar 

  • Cheng YQ, Yang LZ, Cao ZH, Ci E, Yin S (2009) Chronosequential changes of selected pedogenic properties in paddy soils as compared with non-paddy soils. Geoderma 151:31–41

    Article  CAS  Google Scholar 

  • Coward EK, Ohno T, Plante AF (2018) Adsorption and molecular fractionation of dissolved organic matter on iron-bearing mineral matrices of varying crystallinity. Environ Sci Technol 52:1036–1044

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Su J, Li H, Zhu Y, Cao Z (2017) Bacterial succession along a long-term chronosequence of paddy soil in the Yangtze River Delta, China. Soil Biol Biochem 104:59–67

    Article  CAS  Google Scholar 

  • Dubinsky EA, Silver WL, Firestone MK (2010) Tropical forest soil microbial communities couple iron and carbon biogeochemistry. Ecology 91:2604–2612

    Article  PubMed  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  • Egamberdieva D, Renella G, Wirth S, Islam R (2010) Secondary salinity effects on soil microbial biomass. Biol Fert Soils 46:445–449

    Article  CAS  Google Scholar 

  • Eusterhues K, Hadrich A, Neidhardt J, Kusel K, Keller TF, Jandt KD, Totsche KU (2014) Reduction of ferrihydrite with adsorbed and coprecipitated organic matter: microbial reduction by Geobacter bremensis vs abiotic reduction by Na-dithionite. Biogeosciences 11:4953–4966

    Article  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fierer N, Hamady M, Lauber CL, Knight R (2008) The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci U S A 105:17994–17999

    Article  PubMed  PubMed Central  Google Scholar 

  • Fierer N, Grandy AS, Six J, Paul EA (2009) Searching for unifying principles in soil ecology. Soil Biol Biochem 41:2249–2256

    Article  CAS  Google Scholar 

  • Frenzel P, Bosse U, Janssen PH (1999) Rice roots and methanogenesis in a paddy soil: ferric iron as an alternative electron acceptor in the rooted soil. Soil Biol Biochem 31:421–430

    Article  CAS  Google Scholar 

  • Fuller CC, Davis JA, Waychunas GA (1993) Surface chemistry of ferrihydrite: part 2. Kinetics of arsenate adsorption and coprecipitation. Geochim Cosmochim Acta 57:2271–2282

    Article  CAS  Google Scholar 

  • García-Rodeja E, Nóvoa JC, Pontevedra X, Martínez-Cortizas A, Buurman P (2004) Aluminium fractionation of European volcanic soils by selective dissolution techniques. Catena 56:155–183

    Article  CAS  Google Scholar 

  • Ge T, Li B, Zhu Z, Hu Y, Yuan H, Dorodnikov M, Jones DL, Wu J, Kuzyakov Y (2017) Rice rhizodeposition and its utilization by microbial groups depends on N fertilization. Biol Fert Soils 53:37–48

    Article  CAS  Google Scholar 

  • Glasauer S, Weidler PG, Langley S, Beveridge TJ (2003) Controls on Fe reduction and mineral formation by a subsurface bacterium. Geochim Cosmochim Acta 67:1277–1288

    Article  CAS  Google Scholar 

  • Guo J, Liu X, Zhang Y, Shen J, Han W, Zhang W, Christie P, Goulding KWT, Vitousek PM, Zhang F (2010) Significant acidification in major Chinese croplands. Science 327:1008–1010

    Article  CAS  PubMed  Google Scholar 

  • Han G, Zhang G (2013) Changes in magnetic properties and their pedogenetic implications for paddy soil chronosequences from different parent materials in South China. Eur J Soil Sci 64:435–444

    Article  CAS  Google Scholar 

  • Hassannezhad H, Pashaee A, Khormali F, Mohammadian M (2008) Effect of soil moisture regime and rice cultivation on mineralogical characteristics of paddy soils of Mazandaran Province, Northern Iran Amol. Int J Soil Sci 3:138–148

    Article  CAS  Google Scholar 

  • He Z, Xu M, Deng Y, Kang S, Kellogg L, Wu L, Van Nostrand JD, Hobbie SE, Reich P, Zhou J (2010) Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. Ecol Lett 13:564–575

    Article  PubMed  Google Scholar 

  • Henneberry YK, Kraus TE, Nico PS, Horwath WR (2012) Structural stability of coprecipitated natural organic matter and ferric iron under reducing conditions. Org Geochem 48:81–89

    Article  CAS  Google Scholar 

  • Hiemstra T, Van Riemsdijk WH (2009) A surface structural model for ferrihydrite I: sites related to primary charge, molar mass, and mass density. Geochim Cosmochim Acta 73:4423–4436

    Article  CAS  Google Scholar 

  • Himmelheber DW, Thomas SH, Löffler FE, Taillefert M, Hughes JB (2008) Microbial colonization of an in situ sediment cap and correlation to stratified redox zones. Environ Sci Technol 43:66–74

    Article  CAS  Google Scholar 

  • Hori T, Müller A, Igarashi Y, Conrad R, Friedrich MW (2010) Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing. ISME J 4:267–278

    Article  CAS  PubMed  Google Scholar 

  • Hu X (2004) Influence of iron oxides and organic matter on magnetic susceptibility in the loess–paleosol sequence. Acta Pedol Sin 41:7–12

    CAS  Google Scholar 

  • Huang L, Jia X, Zhang G, Thompson A, Huang F, Shao M, Chen L (2018) Variations and controls of iron oxides and isotope compositions during paddy soil evolution over a millennial time scale. Chem Geol 476:340–351

    Article  CAS  Google Scholar 

  • Jones AM, Griffin PJ, Waite TD (2015) Ferrous iron oxidation by molecular oxygen under acidic conditions: the effect of citrate, EDTA and fulvic acid. Geochim Cosmochim Acta 160:117–131

    Article  CAS  Google Scholar 

  • Kaiser K, Guggenberger G (2000) The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Org Geochem 31:711–725

    Article  CAS  Google Scholar 

  • Kaiser K, Guggenberger G (2003) Mineral surfaces and soil organic matter. Eur J Soil Sci 54:219–236

    Article  CAS  Google Scholar 

  • Kato S, Nakamura R, Kai F, Watanabe K, Hashimoto K (2010) Respiratory interactions of soil bacteria with (semi) conductive iron-oxide minerals. Environ Microbiol 12:3114–3123

    Article  CAS  PubMed  Google Scholar 

  • Kirk G (2004) The biogeochemistry of submerged soils. Wiley, Chichester

    Book  Google Scholar 

  • Knorr KH, Blodau C (2009) Impact of experimental drought and rewetting on redox transformations and methanogenesis in mesocosms of a northern fen soil. Soil Biol Biochem 41:1187–1198

    Article  CAS  Google Scholar 

  • Kögel-Knabner I, Amelung W, Cao Z, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Kölbl A, Schloter M (2010) Biogeochemistry of paddy soils. Geoderma 157:1–14

    Article  CAS  Google Scholar 

  • Kölbl A, Schad P, Jahn R, Amelung W, Bannert A, Cao Z, Fiedler S, Kalbitz K, Lehndorff E, Müller-Niggemann C, Schloter M, Schwark L, Vogelsang V, Wissing L, Kögel-Knabner I (2014) Accelerated soil formation due to paddy management on marshlands (Zhejiang Province, China). Geoderma 228:67–89

    Article  CAS  Google Scholar 

  • Kotloski NJ, Gralnick JA (2013) Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. MBio 4:10–13

    Article  CAS  Google Scholar 

  • Larsen O, Postma D (2001) Kinetics of reductive bulk dissolution of lepidocrocite, ferrihydrite, and goethite. Geochem Cosmochim Acta 65:1367–1379

    Article  CAS  Google Scholar 

  • Li Y, Yu S, Strong J, Wang H (2012) Are the biogeochemical cycles of carbon, nitrogen, sulfur, and phosphorus driven by the “Fe III–Fe II redox wheel” in dynamic redox environments? J Soils Sediment 12:683–693

    Article  CAS  Google Scholar 

  • Li X, Sun G, Chen S, Fang Z, Yuan H, Shi Q, Zhu Y (2018) Molecular chemodiversity of dissolved organic matter in paddy soils. Environ Sci Technol 52:963–971

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang P, Ding Y, Lu H, Li L, Cheng K, Zheng J, Filley T, Zhang X, Zheng J, Pan G (2016a) Microbial activity promoted with organic carbon accumulation in macroaggregates of paddy soils under long-term rice cultivation. Biogeosciences 13:6565–6586

    Article  CAS  Google Scholar 

  • Liu Y, Wang P, Pan G, Crowley D, Li L, Zheng J, Zhang X, Zheng J (2016b) Functional and structural responses of bacterial and fungal communities from paddy fields following long-term rice cultivation. J Soils Sediment 16:1460–1471

    Article  CAS  Google Scholar 

  • Liu Y, Wang P, Crowley D, Liu X, Chen J, Li L, Zheng J, Zhang X, Zheng J, Pan G (2016c) Methanogenic abundance and changes in community structure along a rice soil chronosequence from east China. Euro J Soil Sci 67:443–455

    Article  CAS  Google Scholar 

  • Liu Y, Ge T, Zhu Z, Liu S, Luo Y, Li Y, Wang P, Gavrichkova O, Xu X, Wang J, Wu J, Guggenberger G, Kuzyakov Y (2019a) Carbon input and allocation by rice into paddy soils: A review. Soil Biology and Biochemistry 133:97–107

  • Liu Y, Dong Y, Wang P, Hussain Q, Ge T, Wang J (2019b) Distribution of methane production and methanogenic archaeal community structure across soil particle size fractions along a rice chronosequence. J Soil Water Conserv 74:235–246

  • Liu Y, Ge T, Ye J, Liu S, Shibistova O, Wang P, Wang J, Li Y, Guggenberger G, Kuzyakov Y, Wu J (2019c) Initial utilization of rhizodeposits with rice growth in paddy soils: rhizosphere and N fertilization effects. Geoderma 338:30–39

  • Lovley DR, Phillips EJ (1987) Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl Environ Microbiol 53:1536–1540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lovley DR, Coates JD, Blunt–Harris EL, Phillips EJP, Woodward JC (1996) Humic substances as electron acceptors for microbial respiration. Nature 382:445–448

    Article  CAS  Google Scholar 

  • Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49:219–286

    Article  CAS  PubMed  Google Scholar 

  • Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. PNAS 104:11436–11440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu S, Lepo JE, Song H, Guan C, Zhang Z (2018) Increased rice yield in long-term crop rotation regimes through improved soil structure, rhizosphere microbial communities, and nutrient bioavailability in paddy soil. Biol Fert Soils 54:909–923

    Article  Google Scholar 

  • Malvankar NS, Vargas M, Nevin KP, Franks AE, Leang C, Kim BC, Inoue K, Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. PNAS 105:3968–3973

    Article  CAS  Google Scholar 

  • Mehra OP, Jackson ML (1960) Iron oxide removal from soils and clays by a dithionite–citrate system buffered with sodium bicarbonate. Clay Clay Miner 5:317–327

    Google Scholar 

  • Moore J, Macalady JL, Schulz MS, White AF, Brantley SL (2010) Shifting microbial community structure across a marine terrace grassland chronosequence, Santa Cruz, California. Soil Biol Biochem 42:21–31

    Article  CAS  Google Scholar 

  • Neubauer SC, Givler K, Valentine SK, Megonigal JP (2005) Seasonal patterns and plant-mediated controls of subsurface wetland biogeochemistry. Ecology 86:3334–3344

    Article  Google Scholar 

  • Pan G, Li L, Wu L, Zhang X (2004) Storage and sequestration potential of topsoil organic carbon in China's paddy soils. Glob Chang Biol 10:79–92

    Article  Google Scholar 

  • Pham AN, Waite TD (2008) Modeling the kinetics of Fe(II) oxidation in the presence of citrate and salicylate in aqueous solutions at pH 60–80 and 25°C. J Phys Chem A 112:5395–5405

    Article  CAS  PubMed  Google Scholar 

  • Pietramellara G, Ascher J, Borgogni F, Ceccherini MT, Guerri G, Nannipieri P (2009) Extracellular DNA in soil and sediment: fate and ecological relevance. Biol Fert Soils 45:219–235

    Article  CAS  Google Scholar 

  • Poggenburg C, Mikutta R, Schippers A, Dohrmann R, Guggenberger G (2018) Impact of natural organic matter coatings on the microbial reduction of iron oxides. Geochem Cosmochim Acta 224:223–248

    Article  CAS  Google Scholar 

  • Rayment GE, Lyons DJ (2011) Soil chemical methods: Australasia, vol 3. CSIRO Publishing, Coolingwood

    Google Scholar 

  • Silva LC, Doane TA, Corrêa RS, Valverde V, Pereira EI, Horwath WR (2015) Iron-mediated stabilization of soil carbon amplifies the benefits of ecological restoration in degraded lands. Ecol Appl 25:1226–1234

    Article  PubMed  Google Scholar 

  • Sodano M, Lerda C, Nisticò R, Martin M, Magnacca G, Celi L, Said-Pullicino D (2017) Dissolved organic carbon retention by coprecipitation during the oxidation of ferrous iron. Geoderma 307:19–29

    Article  CAS  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton, NJ

  • Tamura H, Goto K, Yotsuyanagi T, Nagayama M (1974) Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III). Talanta 21:314–318

    Article  CAS  PubMed  Google Scholar 

  • Teh YA, Dubinsky EA, Silver WL, Carlson CM (2008) Suppression of methanogenesis by dissimilatory Fe(III)-reducing bacteria in tropical rain forest soils: implications for ecosystem methane flux. Glob Chang Biol 14:413–422

    Article  Google Scholar 

  • Vogelsang V, Kaiser K, Wagner FE, Jahn R, Fiedler S (2016) Transformation of clay-sized minerals in soils exposed to prolonged regular alternation of redox conditions. Geoderma 278:40–48

    Article  CAS  Google Scholar 

  • Wade J, Waterhouse H, Roche LM, Horwath WR (2018) Structural equation modeling reveals iron (hydr)oxides as a strong mediator of N mineralization in California agricultural soils. Geoderma 315:120–129

    Article  CAS  Google Scholar 

  • Wagai R, Mayer LM (2007) Sorptive stabilization of organic matter in soils by hydrous iron oxides. Geochem Cosmochim Acta 71:25–35

    Article  CAS  Google Scholar 

  • Wagai R, Mayer L, Kitayama K, Shirato Y (2013) Association of organic matter with iron and aluminum across a range of soils determined via selective dissolution techniques coupled with dissolved nitrogen analysis. Biogeochemistry 112:95–109

    Article  CAS  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Liu Y, Li L, Cheng K, Zheng J, Zhang X, Zheng J, Joseph S, Pan G (2015) Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence. Sci Rep 5:15704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss JV, Emerson D, Megonigal JP (2004) Geochemical control of microbial Fe(III) reduction potential in wetlands: comparison of the rhizosphere to nonrhizosphere soil. FEMS Microbiol Ecol 48:89–100

    Article  CAS  PubMed  Google Scholar 

  • Wen Y, Xiao J, Liu F, Goodman BA, Li W, Jia Z, Ran W, Zhang R, Shen Q, Yu G (2018) Contrasting effects of inorganic and organic fertilisation regimes on shifts in Fe redox bacterial communities in red soils. Soil Biol Biochem 117:56–67

  • Wissing L, Kölbl A, Häusler W, Schad P, Cao Z, Kögel-Knabner I (2013) Management-induced organic carbon accumulation in paddy soils: the role of organo-mineral associations. Soil Till Res 126:60–71

    Article  Google Scholar 

  • Wissing L, Kölbl A, Schad P, Bräuer T, Cao Z, Kögel-Knabner I (2014) Organic carbon accumulation on soil mineral surfaces in paddy soils derived from tidal wetlands. Geoderma 228:90–103

    Article  CAS  Google Scholar 

  • Wu J, Joergensen R, Pommerening B, Chaussod R, Brookes P (1990) Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure. Soil Biol Biochem 22:1167–1169

    Article  CAS  Google Scholar 

  • Zhang G, Gong Z (2003) Pedogenic evolution of paddy soils in different soil landscapes. Geoderma 115:15–29

    Article  CAS  Google Scholar 

  • Zhou J, Dang Z, Cai M, Liu C (2007) Soil heavy metal pollution around the Dabaoshan mine, Guangdong Province, China. Pedosphere 17:588–559

    Article  CAS  Google Scholar 

  • Zhou P, Song G, Pan G, Li L, Zhang X (2009) Role of chemical protection by binding to oxyhydrates in SOC sequestration in three typical paddy soils under long-term agro-ecosystem experiments from South China. Geoderma 153:52–60

    Article  CAS  Google Scholar 

  • Zou Y, Lv X, Jiang M (2008) Characteristics of the wetland soil iron under different ages of reclamation. Environ Sci 29:814–818

    Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (41601305, 41807089, 41761134095), China Postdoctoral Science Foundation (2017M612573), the Youth Innovation Team Project of the Institute of Subtropical Agriculture, Chinese Academy of Sciences (2017QNCXTD_GTD), Hunan Province Base for Scientific and Technological Innovation Cooperation (2018WK4012), the International Postdoctoral Exchange Fellowship Program 2018 (20180017), and Chinese Academy of Sciences President’s International Fellowship Initiative to Georg Guggenberger (2018VCA0031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 204 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Dong, Y., Ge, T. et al. Impact of prolonged rice cultivation on coupling relationship among C, Fe, and Fe-reducing bacteria over a 1000-year paddy soil chronosequence. Biol Fertil Soils 55, 589–602 (2019). https://doi.org/10.1007/s00374-019-01370-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-019-01370-x

Keywords

  • Paddy chronosequence
  • Fe oxides
  • Fe-reducing bacteria
  • C-Fe stoichiometry
  • Fe-reducing bacteria