Skip to main content

Advertisement

Log in

Distribution and thermal stability of physically and chemically protected organic matter fractions in soils across different ecosystems

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Accrual of carbon (C) and nitrogen (N) in soil is a significant and realizable management option to mitigate climate change; thus, a clear understanding of the mechanisms controlling the persistence of C and N in soil organic matter (SOM) across different ecosystems has never been more needed. Here, we investigated SOM distribution between physically and chemically stabilized fractions in soils from a variety of ecosystems (i.e., coniferous and broadleaved forest soils, grassland soils, technosols, and agricultural soils). Using elemental and thermal analyses, we examined changes in the quantity and quality of physically fractionated SOM pools characterized by different mechanisms of protection from decomposition. Independently of the ecosystem type, most of the organic C and total N were found in the mineral-associated SOM pool, known to be protected mainly by chemical mechanisms. Indexes of thermal stability and C/N ratio of this heavy SOM fraction were lower (especially in agricultural soils) compared to light SOM fractions found free or occluded in aggregates, and suggested a marked presence of inherently labile compounds. Our results confirm that the association of labile organic molecules with soil minerals is a major stabilization mechanism of SOM, and demonstrate that this is a generalizable finding occurring across different mineral soils and ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amundson R, Berhe AA, Hopmans JW, Olson C, Sztein AE, Sparks DL (2015) Soil and human security in the 21st century. Science 348:647–653

    Article  CAS  Google Scholar 

  • Anderson DW, Paul EA (1984) Organo-mineral complexes and their study by radiocarbon dating. Soil Sci Soc Am J 48:298–301

    Article  CAS  Google Scholar 

  • Baldock JA, Skjemstad JO (2000) Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org Geochem 31:697–710

    Article  CAS  Google Scholar 

  • Bingham AH, Cotrufo MF (2016) Organic nitrogen storage in mineral soil: implications for policy and management. Sci Total Environ 551-552:116–126

    Article  PubMed  CAS  Google Scholar 

  • Castellano MJ, Mueller KE, Olk DC, Sawyer JE, Six J (2015) Integrating plant litter quality, soil organic matter stabilization and the carbon saturation concept. Glob Chang Biol 21:3200–3209

    Article  PubMed  Google Scholar 

  • Catoni M, D’Amico ME, Zanini E, Bonifacio E (2016) Effect of pedogenic processes and formation factors on organic matter stabilization in alpine forest soils. Geoderma 263:151–160

    Article  CAS  Google Scholar 

  • Chabbi A, Lehmann J, Ciais P, Loescher H, Cotrufo MF, Don A, SanClements M, Schipper L, Six J, Smith P, Rumpel C (2017) Aligning agriculture and climate policy. Nat Clim Chang 7:307–309

    Article  Google Scholar 

  • Chaudhuri S, McDonald LM, Pena-Yewtukhiw EM, Skousen J, Roy M (2013) Chemically stabilized soil organic carbon fractions in a reclaimed minesoil chronosequence: implications for soil carbon sequestration. Environ Earth Sci 70:1689–1698

    Article  CAS  Google Scholar 

  • Chen C, Dynes JJ, Wang J, Sparks DL (2014) Properties of Fe-organic matter associations via coprecipitation versus adsorption. Environ Sci Technol 48:13751–13759

    Article  PubMed  CAS  Google Scholar 

  • Christensen BT (2001) Physical fractionation of soil and structural and functional complexity in organic matter turnover. Eur J Soil Sci 52:345–353

    Article  CAS  Google Scholar 

  • Clemente JS, Simpson AJ, Simpson MJ (2011) Association of specific organic matter compounds in size fractions of soils under different environmental controls. Org Geochem 42:1169–1180

    Article  CAS  Google Scholar 

  • Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013) The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Chang Biol 19:988–995

    Article  PubMed  Google Scholar 

  • Courtier-Murias D, Simpson AJ, Marzadori C, Baldoni G, Ciavatta C, Fernández JM, López-de-Sá EG, Plaza C (2013) Unraveling the long-term stabilization mechanisms of organic materials in soils by physical fractionation and NMR spectroscopy. Agric Ecosyst Environ 171:9–18

    Article  CAS  Google Scholar 

  • Denef K, Del Galdo I, Venturi A, Cotrufo MF (2013) Assessment of soil C and N stocks and fractions across 11 European soils under varying land uses. Open J Soil Sci 3:297–313

    Article  CAS  Google Scholar 

  • DiCosty RJ, Weliky DP, Anderson SJ, Paul EA (2003) 15N-CPMAS nuclear magnetic resonance spectroscopy and biological stability of soil organic nitrogen in whole soil and particle-size fractions. Org Geochem 34:1635–1650

    Article  CAS  Google Scholar 

  • Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Chang Biol 18:1781–1796

    Article  Google Scholar 

  • Golchin A, Oades JM, Skjemstad JO, Clarke P (1994) Study of free and occluded particulate organic matter in soils by solid state 13C CP/MAS NMR spectroscopy and scanning electron microscopy. Aust J Soil Res 32:285–309

    Article  CAS  Google Scholar 

  • Guggenberger G, Christensen BT, Zech W (1994) Land-use effects on the composition of organic matter in particle-size separates of soil: I. Lignin and carbohydrate signature. Eur J Soil Sci 45:449–458

    Article  CAS  Google Scholar 

  • Guggenberger G, Zech W, Thomas RJ (1995) Lignin and carbohydrate alteration in particle-size separates of an Oxisol under tropical pastures following native savanna. Soil Biol Biochem 27:1629–1638

    Article  CAS  Google Scholar 

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Chang Biol 8:345–360

    Article  Google Scholar 

  • Harris D, Horwath WR, van Kessel C (2001) Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Sci Soc Am J 65:1853–1856

    Article  CAS  Google Scholar 

  • Hatton P-J, Kleber M, Zeller B, Moni C, Plante AF, Townsend K, Gelhaye L, Lajtha K, Derrien D (2012) Transfer of litter-derived N to soil mineral–organic associations: evidence from decadal 15N tracer experiments. Org Geochem 42:1489–1501

    Article  CAS  Google Scholar 

  • IUSS Working Group WRB (2006) World Reference Base for Soil Resources 2006: a Framework for International Classification, Correlation and Communication, 2nd edn. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Jenny H (1941) Factors of soil formation. McGraw-Hill Book Company, New York & London

    Google Scholar 

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Kallenbach CM, Frey SD, Grandy AS (2016) Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat Commun 7:13630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kästner M (2000) “Humification” process or formation of refractory soil organic matter. In: Rehm H-J, Reed G (eds) Environmental processes II, vol 11b. Biotechnology, 2nd edn. Wiley-VCH, Weinheim, pp 89–125

    Google Scholar 

  • Keiluweit M, Bougoure JJ, Zeglin L, Myrold DD, Weber PK, Pett-Ridge J, Kleber M, Nico PS (2012) Nano-scale investigation of the association of microbial nitrogen residues with iron (hydr)oxides in a forest soil O-horizon. Geochim Cosmochim Acta 95:213–226

    Article  CAS  Google Scholar 

  • Kiem R, Kögel-Knabner I (2003) Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils. Soil Biol Biochem 35:101–118

    Article  CAS  Google Scholar 

  • Kiem R, Knicker H, Kögel-Knabner I (2002) Refractory organic carbon in particle-size fractions of arable soils I: distribution of refractory carbon between the size fractions. Org Geochem 33:1683–1697

    Article  CAS  Google Scholar 

  • Kindler R, Miltner A, Richnow H-H, Kästner M (2006) Fate of gram-negative bacterial biomass in soil-mineralization and contribution to SOM. Soil Biol Biochem 38:2860–2870

    Article  CAS  Google Scholar 

  • Kleber M (2010) What is recalcitrance soil organic matter? Environ Chem 7:320–332

    Article  CAS  Google Scholar 

  • Kleber M, Nico PS, Plante A, Filley T, Kramer M, Swanston C, Sollins P (2011) Old and stable soil organic matter is not necessarily chemically recalcitrant: implication for modeling concepts and temperature sensitivity. Glob Chang Biol 17:1097–1107

    Article  Google Scholar 

  • Knicker H (2004) Stabilization of N-compounds in soil and organic-matter-rich sediments–what is the difference? Mar Chem 92:167–195

    Article  CAS  Google Scholar 

  • Kögel-Knabner I, Guggenberger G, Kleber M, Kandeler E, Kalbitz K, Scheu S, Eusterhues K, Leiweber P (2008) Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. J Plant Nutr Soil Sci 171:61–82

    Article  CAS  Google Scholar 

  • Kooch Y, Hosseini SM, Zaccone C, Jalilvand H, Hojjati SM (2012) Soil organic carbon sequestration as affected by afforestation: the Darab Kola forest (north of Iran) case study. J Environ Monit 14:2438–2446

    Article  PubMed  CAS  Google Scholar 

  • Krull ES, Baldock JA, Skjemstad JO (2003) Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover. Funct Plant Biol 30:207–222

    Article  Google Scholar 

  • Ladd JN, Foster RC, Nannipieri P, Oades JM (1996) Soil structure and biological activity. In: Stotzky G, Bollag J-M (eds) Soil biochemistry, vol 9. Marcel Dekker, New York, pp 23–78

    Google Scholar 

  • Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528:60–80

    Article  PubMed  CAS  Google Scholar 

  • Leifeld J, Kögel-Knabner I (2005) Soil organic matter as early indicators for carbon stock changes under different land-use? Geoderma 124:143–155

    Article  CAS  Google Scholar 

  • Lopez-Capel E, Sohi SP, Gaunt JL, Manning DAC (2005) Use of thermogravimetry-differential scanning calorimetry to characterize modelable soil organic matter fractions. Soil Sci Soc Am J 69:136–140

    Article  CAS  Google Scholar 

  • Lynch DL, Cotnoir LJ (1956) The influence of clay minerals on the breakdown of certain organic substances. Proc Soil Sci Soc Am 20:367–370

    Article  CAS  Google Scholar 

  • Magdoff F, Weil RR (2004) Soil organic matter in sustainable agriculture. CRC Press, Boca Raton

    Book  Google Scholar 

  • Marschner B, Brodowski S, Dreves A, Gleixner G, Gude A, Grootes PM, Hamer U, Heim A, Jandl G, Ji R, Kaiser K, Kalbitz K, Kramer C, Leinweber P, Rethemeyer J, Schäffer A, Schmidt MWI, Schwark L, Wiesenberg GLB (2008) How relevant is recalcitrance for the stabilization of organic matter in soils? J Plant Nutr Soil Sci 171:91–110

    Article  CAS  Google Scholar 

  • Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509

    Article  PubMed  CAS  Google Scholar 

  • McGill WB, Paul EA (1976) Fractionation of soil and 15N nitrogen to separate the organic and clay interactions of immobilized N. Can J Soil Sci 56:203–212

    Article  CAS  Google Scholar 

  • Miltner A, Bombach P, Schmidt-Brücken B, Kästner M (2012) SOM genesis: microbial biomass as a significant source. Biogeochem 111:41–55

    Article  CAS  Google Scholar 

  • Moreno-Barriga F, Díaz V, Acosta JA, Muñoz MÁ, Faz Á, Zornoza R (2017) Organic matter dynamics, soil aggregation and microbial biomass and activity in Technosols created with metalliferous mine residues, biochar and marble waste. Geoderma 301:19–29

    Article  CAS  Google Scholar 

  • Nannipieri P, Paul EA (2009) The chemical and functional characterization of soil N and its biotic components. Soil Biol Biochem 41:2357–2369

    Article  CAS  Google Scholar 

  • Nielsen KM, Calamai L, Pietramellara G (2006) Stabilization of extracellular DNA by transient binding to various soil surfaces. In: Nannipieri P, Smalla K (eds) Nucleic acids and proteins in soil (soil biology), vol 8. Springer, Berlin, pp 141–158

    Chapter  Google Scholar 

  • Paul EA, Clark FE (1989) Soil microbiology and biochemistry. Academic Press, San Diego

    Google Scholar 

  • Paustian K, Parton WJ, Persson J (1992) Modeling soil organic-matter in organic-amended and nitrogen-fertilized long-term plots. Soil Sci Soc Am J 56:476–488

    Article  Google Scholar 

  • Plante AF, Fernández JM, Leifeld J (2009) Application of thermal analysis techniques in soil science. Geoderma 153:1–10

    Article  CAS  Google Scholar 

  • Plaza C, Courtier-Murias D, Fernández JM, Polo A, Simpson AJ (2013) Physical, chemical, and biochemical mechanisms of soil organic matter stabilization under conservation tillage systems: a central role for microbes and microbial by-products in C sequestration. Soil Biol Biochem 57:124–134

    Article  CAS  Google Scholar 

  • Plaza C, Giannetta B, Fernández JM, López-de-Sá EG, Polo A, Gascó G, Méndez A, Zaccone C (2016) Response of different soil organic matter pools to biochar and organic fertilizers. Agric Ecosyst Environ 225:150–159

    Article  Google Scholar 

  • Poeplau C, Don A, Six J, Kaiser M, Benbi D, Chenu C, Cotrufo MF, Derrien D, Gioacchini P, Grand S, Gregorich E, Griepentrog M, Gunina A, Haddix M, Kuzyakov Y, Kühnel A, Macdonald LM, Soong J, Trigalet S, Vermeire M-L, Rovira P, van Wesemaell B, Wiesmeier M, Yeasmin S, Yevdokimov I, Nieder R (submitted) Isolating soil organic carbon fractions with varying turnover rates—a comprehensive method comparison. Soil Biol Biochem

  • Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Chang Biol 6:317–327

    Article  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/

  • Rasmussen C, Torn MS, Southard RJ (2005) Mineral assemblage and aggregates control carbon dynamics in a California conifer forest. Soil Sci Soc Am J 69:1711–1721

    Article  CAS  Google Scholar 

  • Rhoades JD (1996) Salinity: electrical conductivity and total dissolved solids. In: Sparks DL (ed) Methods of soil analysis, part 3-chemical methods. SSSA book series 5.3. SSSA-ASA, Madison, pp 417–435

    Google Scholar 

  • Rodríguez-Vila A, Asensio V, Forján R, Covelo EF (2016) Carbon fractionation in a mine soil amended with compost and biochar and vegetated with Brassica juncea L. J Geochem Explor 169:137–143

    Article  CAS  Google Scholar 

  • Rovira P, Vallejo RV (2000) Examination of thermal and acid hydrolysis procedures in characterization of soil organic matter. Commun Soil Sci Plant Anal 31:81–100

    Article  CAS  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    Article  PubMed  CAS  Google Scholar 

  • Schnitzer M, Hoffman J (1966) A thermogravimetric approach to the classification of organic soils. Soil Sci Soc Am Proc 30:63–66

    Article  CAS  Google Scholar 

  • Schulten H-R, Leinweber P (1999) Thermal stability and composition of mineral-bound organic matter in density fractions of soil. Eur J Soil Sci 50:237–248

    Article  Google Scholar 

  • Simpson AJ, Simpson MJ, Smith E, Kelleher BP (2007) Microbially derived inputs to soil organic matter: are current estimates too low? Environ Sci Technol 41:8070–8076

    Article  PubMed  CAS  Google Scholar 

  • Six J, Elliott ET, Paustian K (2000) Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem 32:2099–2103

    Article  CAS  Google Scholar 

  • Six J, Callewaert P, Lenders S, De Gryze S, Morris SJ, Gregorich EG, Paul EA, Paustian K (2002) Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Sci Soc Am J 66:1981–1987

    Article  CAS  Google Scholar 

  • Sohi SP, Mahieu N, Arah JRM, Powlson DS, Madari B, Gaunt JL (2001) A procedure for isolating soil organic matter fractions suitable for modeling. Soil Sci Soc Am J 65:1121–1128

    Article  CAS  Google Scholar 

  • Soil Survey Staff (2014) Keys to soil taxonomy, 12th edn. USDA-Natural Resources Conservation Service, Washington, DC

    Google Scholar 

  • Sollins P, Homann P, Caldwell BA (1996) Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74:65–105

    Article  Google Scholar 

  • Sollins P, Swanston C, Kleber M, Filley T, Kramer M, Crow S, Caldwell BA, Lajtha K, Bowden R (2006) Organic C and N stabilization in a forest soil: evidence from sequential density fractionation. Soil Biol Biochem 38:3313–3324

    Article  CAS  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry. Genesis, composition, reactions, 2nd edn. Wiley, New York

    Google Scholar 

  • Thomas GW (1996) Soil pH and soil acidity. In: Sparks DL (ed) Methods of soil analysis, part 3-chemical methods. SSSA book series 5.3. SSSA-ASA, Madison, pp 475–490

    Google Scholar 

  • Turchenek LW, Oades JM (1979) Fractionation of organomineral complexes by sedimentation and density techniques. Geoderma 21:311–343

    Article  CAS  Google Scholar 

  • Vogel C, Mueller CW, Höschen C, Buegger F, Heister K, Schulz S, Schloter M, Kögel-Knabner I (2014) Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils. Nat Commun 5:2947

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • von Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57:426–445

    Article  CAS  Google Scholar 

  • Wei X, Wang X, Ma T, Huang L, Pu Q, Hao M, Zhang X (2017) Distribution and mineralization of organic carbon and nitrogen in forest soils of the southern Tibetan Plateau. Catena 156:298–304

    Article  CAS  Google Scholar 

  • Wiesmeier M, Spörlein P, Geuß U, Hangen E, Haug S, Reischl A, Schilling B, von Lützow M, Kögel-Knabner I (2012) Soil organic carbon stocks in southeast Germany (Bavaria) as affected by land use, soil type and sampling depth. Glob Chang Biol 18:2233–2245

    Article  Google Scholar 

  • Yoo G, Wander MM (2008) Tillage effects on aggregate turnover and sequestration of particulate and humified soil organic carbon. Soil Sci Soc Am J 72:670–676

    Article  CAS  Google Scholar 

  • Zaccone C, Quideau S, Sauer D (2014) Soils and paleosols as archives of natural and anthropogenic environmental changes. Eur J Soil Sci 65:403–405

    Article  Google Scholar 

  • Zaccone C, Beneduce L, Lotti C, Martino G, Plaza C (submitted) DNA occurrence in organic matter fractions isolated from amended, agricultural soils. Appl Soil Ecol

Download references

Acknowledgements

The authors thank the Soil Staff “Monitoraggio Suoli” of the Regione Marche (Italy) for the support in soil samples collection and classification, and Dr. Esther G. López-de-Sá, CSIC, for the help during lab activities.

Funding

This research was supported by the Spanish Ministry of Economy and Competitiveness, grants AGL2013-48681 and AGL2016-75762.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Zaccone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giannetta, B., Plaza, C., Vischetti, C. et al. Distribution and thermal stability of physically and chemically protected organic matter fractions in soils across different ecosystems. Biol Fertil Soils 54, 671–681 (2018). https://doi.org/10.1007/s00374-018-1290-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-018-1290-9

Keywords

Navigation