Skip to main content

Dung application increases CH4 production potential and alters the composition and abundance of methanogen community in restored peatland soils from Europe

Abstract

Peatland restoration via rewetting aims to recover biological communities and biogeochemical processes typical to pristine peatlands. While rewetting promotes recovery of C accumulation favorable for climate mitigation, it also promotes methane (CH4) emissions. The potential for exceptionally high emissions after rewetting has been measured for Central European peatland sites previously grazed by cattle. We addressed the hypothesis that these exceptionally high CH4 emissions result from the previous land use. We analyzed the effects of cattle dung application to peat soils in a short- (2 weeks), a medium- (1 year) and a long-term (grazing) approach. We measured the CH4 production potentials, determined the numbers of methanogens by mcrA qPCR, and analyzed the methanogen community by mcrA T-RFLP-cloning-sequencing. Dung application significantly increased the CH4 production potential in the short- and the medium-term approach and non-significantly at the cattle-grazed site. The number of methanogens correlated with the CH4 production in the short- and the long-term approach. At all three time horizons, we found a shift in methanogen community due to dung application and a transfer of rumen methanogen sequences (Methanobrevibacter spp.) to the peatland soil that seemed related to increased CH4 production potential. Our findings indicate that cattle grazing of drained peatlands changes their methanogenic microbial community, may introduce rumen-associated methanogens and leads to increased CH4 production. Consequently, rewetting of previously cattle-grazed peatlands has the potential to lead to increased CH4 emissions. Careful consideration of land use history is crucial for successful climate mitigation with peatland rewetting.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aapala K, Sallantaus T, Haapalehto T (2008) Ecological restoration of drained peatlands. In: Korhonen R, Korpela L, Sarkkola S (eds) Finland-Fenland. Finnish Peatland Society & Maahenki, Helsinki, pp 243–249

  2. Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105

    CAS  Article  PubMed  Google Scholar 

  3. Aguilar OA, Maghirang R, Trabue SL, Erickson LE (2014) Experimental research on the effects of water application on greenhouse gas emissions from beef cattle feedlots. Int J Energy Environ Eng 5:1–12

    CAS  Article  Google Scholar 

  4. Augustin J, Chojnicki B (2008) Austausch von klimarelevanten Spurengasen, Klimawirkung und Kohlenstoffdynamik in den ersten Jahren nach der Wiedervernässung von degradiertem Niedermoorgrünland. In: Gelbrecht J, Zak D, Augustin J (eds) Phosphor- und Kohlenstoff- Dynamik und Vegetationsentwicklung in wiedervernässten Mooren des Peenetals in Mecklenburg-Vorpommern – Status, Steuergrößen und Handlungsmöglichkeiten, 26th edn. Institut für Gewässerökologie und Binnenfischerei, Berlin, pp 50–67

    Google Scholar 

  5. Basiliko N, Blodau C, Roehm C, Bengtson P, Moore TR (2007) Regulation of decomposition and methane dynamics across natural, commercially mined, and restored northern peatlands. Ecosystems 10:1148–1165

    CAS  Article  Google Scholar 

  6. Bessetti J (2007) An introduction to PCR inhibitors. Profiles DNA 10:9–10

    Google Scholar 

  7. Blume H-P, Stahr K, Leinweber P (2011) Bodenkundliches Praktikum: Eine Einführung in pedologisches Arbeiten für Ökologen, insbesondere Land- und Forstwirte, und für Geowissenschaftler. Kapitel 5 Laboruntersuchungen, 3rd edn. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  8. Buttler A, Grosvernier P, Matthey Y (1998) A new sampler for extracting undisturbed surface peat cores for growth pot experiments. New Phytol 140:355–360

    Article  Google Scholar 

  9. Cadillo-Quiroz H, Brauer S, Yashiro E, Sun C, Yavitt JB, Zinder S (2006) Vertical profiles of methanogenesis and methanogens in two contrasting acidic peatlands in central New York State, USA. Environ Microbiol 8:1428–1440

    CAS  Article  PubMed  Google Scholar 

  10. Carberry CA, Kenny DA, Kelly AK, Waters SM (2014a) Quantitative analysis of ruminal methanogenic microbial populations in beef cattle divergent in phenotypic residual feed intake (RFI) offered contrasting diets. J Anim Sci Biotechnol 5:41

    Article  PubMed  PubMed Central  Google Scholar 

  11. Carberry CA, Waters SM, Kenny DA, Creevey CJ (2014b) Rumen methanogenic genotypes differ in abundance according to host residual feed intake phenotype and diet type. Appl Environ Microbiol 80:586–594

    Article  PubMed  PubMed Central  Google Scholar 

  12. Danielsson R, Dicksved J, Sun L, Gonda H, Müller B, Schnürer A, Bertilsson J (2017) Methane production in dairy cows correlates with rumen methanogenic and bacterial community structure. Front Microbiol 8:284

    Article  Google Scholar 

  13. Dierßen K, Dierßen B (2008) Moore. 16 Tabellen. Ulmer. Stuttgart

  14. Drösler M, Adelmann W, Augustin J, Bergmann L, Beyer C, Chojnicki B, Förster C, Freibauer A, Giebels M, Görlitz S, Höper H, Kantelhardt J, Liebersbach H, Hahn-Schöfl M, Minke M, Petschow U, Pfadenhauer J, Schaller L, Schägner P, Sommer M, Thuille A, Werhan M (2013) Klimaschutz durch Moorschutz. Schlussbericht des Vorhabens “Klimaschutz - Moornutzungsstrategien” 2006–2010. Freising

  15. Elhottova D, Koubová A, Šimek M, Cajthaml T, Jirout J, Esperschuetz J, Schloter M, Gattinger A (2012) Changes in soil microbial communities as affected by intensive cattle husbandry. Appl Soil Ecol 58:56–65

    Article  Google Scholar 

  16. Ferry JG (ed) (2012) Methanogenesis: ecology, physiology, biochemistry & genetics. Springer, Dordrecht

    Google Scholar 

  17. Flessa H, Beese F (2000) Laboratory estimates of trace gas emissions following surface application and injection of cattle slurry. J Environ Qual 29:262

    CAS  Article  Google Scholar 

  18. Freibauer A (2008) The methane fraction of the carbon balance in restored temperate peatlands. Geophys Res Abstr 10:1607–7962

    Google Scholar 

  19. Freitag TE, Prosser JI (2009) Correlation of methane production and functional gene transcriptional activity in a peat soil. Appl Environ Microbiol 75:6679–6687

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Gattinger A, Hofle MG, Schloter M, Embacher A, Bohme F, Munch JC, Labrenz M (2007) Traditional cattle manure application determines abundance, diversity and activity of methanogenic archaea in arable European soil. Environ Microbiol 9:612–624

    CAS  Article  PubMed  Google Scholar 

  21. Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Article  PubMed  Google Scholar 

  22. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    CAS  Article  PubMed  Google Scholar 

  23. Hahn J, Köhler S, Glatzel S, Jurasinski G (2015) Methane exchange in a coastal fen in the first year after flooding—a systems shift. PLoS One 10:e0140657

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hamza MA, Anderson WK (2005) Soil compaction in cropping systems. Soil Tillage Res 82:121–145

    Article  Google Scholar 

  25. Hargreaves SK, Roberto AA, Hofmockel KS (2013) Reaction- and sample-specific inhibition affect standardization of qPCR assays of soil bacterial communities. Soil Biol Biochem 59:89–97

    CAS  Article  Google Scholar 

  26. Harms G, Layton AC, Dionisi HM, Gregory IR, Garrett VM, Hawkins SA, Robinson KG, Sayler GS (2003) Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ Sci Technol 37:343–351

    CAS  Article  PubMed  Google Scholar 

  27. Haynes RJ, Williams PH (1993) Nutrient cycling and soil fertility in the grazed pasture ecosystem. In: Sparks DL (ed) Advances in agronomy. Academic Press, San Diego, CA, pp 119–199

    Google Scholar 

  28. Hendriks DMD, van Huissteden J, Dolman AJ, van der Molen MK (2007) The full greenhouse gas balance of an abandoned peat meadow. Biogeosciences 4:411–424

    CAS  Article  Google Scholar 

  29. Ho A, El-Hawwary A, Kim SY, Meima-Franke M, Bodelier P (2015) Manure-associated stimulation of soil-borne methanogenic activity in agricultural soils. Biol Fertil Soils 51:511–516

    CAS  Article  Google Scholar 

  30. Jaatinen K, Fritze H, Laine J, Laiho R (2007) Effects of short- and long-term water-level drawdown on the populations and activity of aerobic decomposers in a boreal peatland. Glob Chang Biol 13:491–510

    Article  Google Scholar 

  31. Jaatinen K, Laiho R, Vuorenmaa A, del Castillo U, Minkkinen K, Pennanen T, Penttilä T, Fritze H (2008) Responses of aerobic microbial communities and soil respiration to water-level drawdown in a northern boreal fen. Environ Microbiol 10:339–353

    CAS  Article  PubMed  Google Scholar 

  32. Janssen PH, Kirs M (2008) Structure of the archaeal community of the rumen. Appl Environ Microbiol 74:3619–3625

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Jauhiainen J, Limin S, Silvennoinen H, Vasander H (2008) Carbon dioxide and methane fluxes in drained tropical peat before and after hydrological restoration. Ecology 89:3503–3514

    Article  PubMed  Google Scholar 

  34. Joosten H, Tanneberger F (2017) Peatland use in Europe. In: Joosten H, Tanneberger F, Moen A (eds) Mires and peatlands of Europe: status, distribution and conservation. Schweizerbart Science Publishers, Stuttgart, pp 155–176

    Google Scholar 

  35. Juottonen H, Hynninen A, Nieminen M, Tuomivirta T, Tuittila E-S, Nousiainen H, Kell DK, Yrjälä K, Tervahauta A, Fritze H (2012) Methane-cycling microbial communities and methane emission in natural and restored peatlands. Appl Environ Microbiol 78:6386–6389

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Juottonen H, Kotiaho M, Robinson D, Merila P, Fritze H, Tuittila E-S (2015) Microform-related community patterns of methane-cycling microbes in boreal sphagnum bogs are site specific. FEMS Microbiol Ecol 91:fiv094

    Article  PubMed  Google Scholar 

  37. Juottonen H, Tuittila E-S, Juutinen S, Fritze H, Yrjälä K (2008) Seasonality of rDNA- and rRNA-derived archaeal communities and methanogenic potential in a boreal mire. ISME J 2:1157–1168

    CAS  Article  PubMed  Google Scholar 

  38. Komulainen V-M, Nykänen H, Martikainen PJ, Laine J (1998) Short-term effect of restoration on vegetation change and methane emissions from peatlands drained for forestry in southern Finland. Can J For Res 28:402–411

    CAS  Article  Google Scholar 

  39. Komulainen V-M, Tuittila E-S, Vasander H, Laine J (1999) Restoration of drained peatlands in southern Finland. Initial effects on vegetation change and CO2 balance. J Appl Ecol 36:634–648

    Article  Google Scholar 

  40. Lafleur PM, Roulet NT, Bubier JL, Frolking S, Moore TR (2003) Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog. Glob Biogeochem Cycles 17:1–13

    Article  Google Scholar 

  41. Laiho R, Penttilä T, Fritze H (2017) Reindeer droppings may increase methane production potential in subarctic wetlands. Soil Biol Biochem 113:260–262

    CAS  Article  Google Scholar 

  42. Laine J, Vasander H, Laiho R (1995) Long-term effects of water level drawdown on the vegetation of drained pine mires in southern Finland. J Appl Ecol 32:785–802

    Article  Google Scholar 

  43. Liu C, Guo T, Chen Y, Meng Q, Zhu C, Huang H (2018) Physicochemical characteristics of stored cattle manure affect methane emissions by inducing divergence of methanogens that have different interactions with bacteria. Agric Ecosyst Environ 253:38–47

    Article  Google Scholar 

  44. Lovell RD, Jarvis SC (1996) Effect of cattle dung on soil microbial biomass C and N in a permanent pasture soil. Soil Biol Biochem 28:291–299

    CAS  Article  Google Scholar 

  45. Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148:3521–3530

    CAS  Article  PubMed  Google Scholar 

  46. Mäkiranta P, Laiho R, Fritze H, Hytönen J, Laine J, Minkkinen K (2009) Indirect regulation of heterotrophic peat soil respiration by water level via microbial community structure and temperature sensitivity. Soil Biol Biochem 41:695–703

    Article  Google Scholar 

  47. Maljanen M, Virkajärvi P, Martikainen PJ (2012) Dairy cow excreta patches change the boreal grass swards from sink to source of methane. Agric Food Sci 21:91–99

    CAS  Google Scholar 

  48. Marinier M (2004) The role of cotton-grass (Eriophorum vaginatum) in the exchange of CO2 and CH4 at two restored peatlands, eastern Canada. Écoscience 11:141–149

    Article  Google Scholar 

  49. Morris R, Schauer-Gimenez A, Bhattad U, Kearney C, Struble CA, Zitomer DH, Maki JS (2014) Methyl coenzyme M reductase (mcrA) gene abundance correlates with activity measurements of methanogenic H(2)/CO(2)-enriched anaerobic biomass. Microb Biotechnol 7:77–84

    CAS  Article  PubMed  Google Scholar 

  50. Morris R, Tale VP, Mathai PP, Zitomer DH, Maki JS (2016) mcrA gene abundance correlates with hydrogenotrophic methane production rates in full-scale anaerobic waste treatment systems. Lett Appl Microbiol 62:111–118

    CAS  Article  PubMed  Google Scholar 

  51. Moss AR, Jouany J-P, Newbold J (2000) Methane production by ruminants, its contribution to global warming. Ann Zootech 49:231–253

    CAS  Article  Google Scholar 

  52. Myhre G, Shindell D, Bréon FM, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque JF, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and Natural Radiative Forcing. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  53. Nellemann C, Corcoran E (2010) Dead planet, living planet. Biodiversity and ecosystem restoration for sustainable development : a rapid response assessment. Birkeland Trykkeri, Norway

    Google Scholar 

  54. Nilsson M, Sagerfors J, Buffam I, Laudon H, Eriksson T, Grelle A, Klemedtsson L, Weslien PER, Lindroth A (2008) Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire—a significant sink after accounting for all C-fluxes. Glob Chang Biol 14:2317–2332

    Article  Google Scholar 

  55. Oleszczuk R, Regina K, Szajdak L, Höper H, Maryganova V (2008) Impacts of agricultural untilization of peat soils on the greenhouse gas balance. In: Strack M (Ed) Peatlands and climate change, Jyväskylä pp 70–97

  56. Parish F, Sirin A, Charman D, Joosten H, Minayeva T, Silvius M, Stringer L (eds) (2008) Assessment on peatlands, biodiversity and climate change. Main report. Global Environment Centre, Kuala Lumpur

    Google Scholar 

  57. Peltoniemi K, Laiho R, Juottonen H, Bodrossy L, Kell DK, Minkkinen K, Mäkiranta P, Mehtätalo L, Penttilä T, Siljanen HMP, Tuittila E-S, Tuomivirta T, Fritze H (2016) Responses of methanogenic and methanotrophic communities to warming in varying moisture regimes of two boreal fens. Soil Biol Biochem 97:144–156

    CAS  Article  Google Scholar 

  58. Pfadenhauer J, Grootjans A (1999) Wetland restoration in Central Europe: aims and methods. Appl Veg Sci 2:95–106

    Article  Google Scholar 

  59. Prem EM, Reitschuler C, Illmer P (2014) Livestock grazing on alpine soils causes changes in abiotic and biotic soil properties and thus in abundance and activity of microorganisms engaged in the methane cycle. Eur J Soil Biol 62:22–29

    Article  Google Scholar 

  60. Putkinen A, Tuittila E-S, Siljanen HMP, Bodrossy L, Fritze H (2018) Recovery of methane turnover and associated microbial communities in restored cutover peatlands is strongly linked with increasing Sphagnum abundance. Soil Biol Biochem 116:110–119

    CAS  Article  Google Scholar 

  61. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  62. Radl V, Gattinger A, Chronakova A, Nemcova A, Cuhel J, Šimek M, Munch JC, Schloter M, Elhottova D (2007) Effects of cattle husbandry on abundance and activity of methanogenic archaea in upland soils. ISME J 1:443–452

    CAS  Article  PubMed  Google Scholar 

  63. Scheffer F, Schachtschabel P, Blume H-P (2002) Lehrbuch der Bodenkunde. Spektrum, Akad. Verl. Heidelberg

    Google Scholar 

  64. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Shin EC, Choi BR, Lim WJ, Hong SY, An CL, Cho KM, Kim YK, An JM, Kang JM, Lee SS, Kim H, Yun HD (2004) Phylogenetic analysis of archaea in three fractions of cow rumen based on the 16S rDNA sequence. Anaerobe 10:313–319

    CAS  Article  PubMed  Google Scholar 

  66. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sirohi SK, Pandey N, Singh B, Puniya AK (2010) Rumen methanogens: a review. Indian J Microbiol 50:253–262

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Smith P, Bustamante M, Ahammad H, Clark H, Dong H, Elsiddig EA, Haberl H, Harper R, House J, Jafari M, Masera O, Mbow C, Ravindranath NH, Rice CW, Robeldo Abad C, Romanovskaya A, Sperling F, Tubiello F (2014) Agriculture, forestry and other land use (AFOLU). In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahanj E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 811–922

    Google Scholar 

  69. Söllinger A, Schwab C, Weinmaier T, Loy A, Tveit AT, Schleper C, Urich T (2016) Phylogenetic and genomic analysis of Methanomassiliicoccales in wetlands and animal intestinal tracts reveals clade-specific habitat preferences. FEMS Microbiol Ecol 92:fiv149

    Article  PubMed  Google Scholar 

  70. Steinberg LM, Regan JM (2008) Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. Appl Environ Microbiol 74:6663–6671

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. TerBraak CJF, Smilauer P (2012) Canoco reference manual and user’s guide: software for ordination, version 5.0. Microcomputer Power, Ithaca

    Google Scholar 

  72. Toes A-CM, Daleke MH, Kuenen JG, Muyzer G (2008) Expression of copA and cusA in Shewanella during copper stress. Microbiology 154:2709–2718

    CAS  Article  PubMed  Google Scholar 

  73. Tuittila E-S, Komulainen V-M, Vasander H, Laine J (1999) Restored cut-away peatland as a sink for atmospheric CO 2. Oecologia 120:563–574

    Article  PubMed  Google Scholar 

  74. Tuittila E-S, Komulainen V-M, Vasander H, Nykänen H, Martikainen PJ, Laine J (2000) Methane dynamics of a restored cut-away peatland. Glob Chang Biol 6:569–581

    Article  Google Scholar 

  75. Turetsky MR, Kotowska A, Bubier JL, Dise NB, Crill P, Hornibrook ERC, Minkkinen K, Moore TR, Myers-Smith IH, Nykänen H, Olefeldt D, Rinne J, Saarnio S, Shurpali N, Tuittila E-S, Waddington JM, White JR, Wickland KP, Wilmking M (2014) A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Glob Chang Biol 20:2183–2197

    Article  PubMed  Google Scholar 

  76. Turunen J, Tomppo E, Tolonen K, Reinikainen A (2002) Estimating carbon accumulation rates of undrained mires in Finland—application to boreal and subarctic regions. The Holocene 12:69–80

    Article  Google Scholar 

  77. Taylor CD, McBride BC, Wolfe RS, Bryant MP (1974) Coenzyme M, essential for growth of a rumen strain of Methanobacterium ruminantium. J Bacteriol 120:974-975

  78. Urbanová Z, Picek T, Bárta J (2011) Effect of peat re-wetting on carbon and nutrient fluxes, greenhouse gas production and diversity of methanogenic archaeal community. Ecol Eng 37:1017–1026

    Article  Google Scholar 

  79. Vasander H, Tuittila E-S, Lode E, Lundin L, Ilomets M, Sallantaus T, Heikkilä R, Pitkänen M-L, Laine J (2003) Status and restoration of peatlands in northern Europe. Wetl Ecol Manag 11:51–63

    CAS  Article  Google Scholar 

  80. Waddington JM, Day SM (2007) Methane emissions from a peatland following restoration. J Geophys Res 112:2156–2202

    Article  Google Scholar 

  81. Waddington JM, Strack M, Greenwood MJ (2010) Toward restoring the net carbon sink function of degraded peatlands—short-term response in CO2 exchange to ecosystem-scale restoration. J Geophys Res 115:1–13

    Article  Google Scholar 

  82. Watanabe T, Kimura M, Asakawa S (2007) Dynamics of methanogenic archaeal communities based on rRNA analysis and their relation to methanogenic activity in Japanese paddy field soils. Soil Biol Biochem 39:2877–2887

    CAS  Article  Google Scholar 

  83. Wilson D, Couwenberg J, Evans CD, Murdiyarso D, Page SE, Renou-Wilson F, Rieley JO, Sirin A, Strack M, Tuittila E-S (2016) Greenhouse gas emission factors associated with rewetting of organic soils. Mires Peat 17:1–28

    Google Scholar 

  84. Wilson D, Tuittila E-S, Alm J, Laine J, Farrell EP, Byrne KA (2007) Carbon dioxide dynamics of a restored maritime peatland. Écoscience 14:71–80

    Article  Google Scholar 

  85. Wright A-DG, Auckland CH, Lynn DH (2007) Molecular diversity of methanogens in feedlot cattle from Ontario and Prince Edward Island, Canada. Appl Environ Microbiol 73:4206–4210

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. Yang Y, Li X, Liu J, Zhou Z, Zhang T, Wang X (2017) Bacterial diversity as affected by application of manure in red soils of subtropical China. Biol Fertil Soils 53:639–649

    Article  Google Scholar 

  87. Yavitt JB, Williams CJ, Wieder RK (2005) Soil chemistry versus environmental controls on production of CH4 and CO2 in northern peatlands. Eur J Soil Sci 56:169–178

    CAS  Article  Google Scholar 

  88. Yrjälä K, Tuomivirta T, Juottonen H, Putkinen A, Lappi K, Tuittila E-S, Penttilä T, Minkkinen K, Laine J, Peltoniemi K, Fritze H (2011) CH4 production and oxidation processes in a boreal fen ecosystem after long-term water table drawdown. Glob Chang Biol 17:1311–1320

    Article  Google Scholar 

Download references

Acknowledgements

Our thanks go to Aino Korrensalo, Salli Uljas, Maria Gutierrez Janne Sormunen, and Javier Andrés Jimenez who kindly helped in carrying and spreading dung to experimental sites and in sampling in Finland, Wilfried Bock for guidance and Steffen Kaufmane for sampling the sites in Germany. Furthermore, we thank Risto Linnainmaa for dung for the field experiment, Tero Tuomivirta for discussions regarding qPCR, and Sirpa Tiikkainen for guidance in cloning and sequencing.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Juliane Hahn.

Electronic supplementary material

ESM 1

(PDF 491 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hahn, J., Juottonen, H., Fritze, H. et al. Dung application increases CH4 production potential and alters the composition and abundance of methanogen community in restored peatland soils from Europe. Biol Fertil Soils 54, 533–547 (2018). https://doi.org/10.1007/s00374-018-1279-4

Download citation

Keywords

  • Climate mitigation
  • Rewetting
  • Methane
  • Cattle grazing
  • Methanogen
  • Land use