Biology and Fertility of Soils

, Volume 53, Issue 4, pp 407–417

Rice rhizodeposition and carbon stabilisation in paddy soil are regulated via drying-rewetting cycles and nitrogen fertilisation

  • Cornelius Talade Atere
  • Tida Ge
  • Zhenke Zhu
  • Chengli Tong
  • Davey L. Jones
  • Olga Shibistova
  • Georg Guggenberger
  • Jinshui Wu
Original Paper

Abstract

This study aimed to better understand the stabilisation of rice rhizodeposition in paddy soil under the interactive effects of different N fertilisation and water regimes. We continuously labelled rice (‘Zhongzao 39’) with 13CO2 under a combination of different water regimes (alternating flooding-drying vs. continuous flooding) and N addition (250 mg N kg−1 urea vs. no addition) and then followed 13C incorporation into plant parts as well as soil fractions. N addition increased rice shoot biomass, rhizodeposition, and formation of 13C (new plant-derived C) in the rhizosphere soils under both water regimes. By day 22, the interaction of alternating flooding-drying and N fertilisation significantly increased shoot and root 13C allocations by 17 and 22%, respectively, over the continuous flooding condition. The interaction effect also led to a 46% higher 13C allocation to the rhizosphere soil. Alone, alternating water management increased 13C deposition by 43%. In contrast, N addition increased 13C deposition in rhizosphere soil macroaggregates under both water regimes, but did not foster macroaggregation itself. N treatment also increased 13C deposition and percentage in microaggregates and in the silt and clay-size fractions of the rhizosphere soil, a pattern that was higher under the alternating condition. Overall, our data indicated that combined N application and a flooding-drying treatment stabilised rhizodeposited C in soil more effectively than other tested conditions. Thus, they are desirable practices for improving rice cropping, capable of reducing cost, increasing water use efficiency, and raising C sequestration.

Keywords

Paddy soils 13C continuous labelling Carbon stabilisation Root exudation Rhizodeposition Recent assimilates 

Supplementary material

374_2017_1190_MOESM1_ESM.docx (197 kb)
Figure S1(DOCX 196 kb)
374_2017_1190_MOESM2_ESM.docx (34 kb)
Table S1(DOCX 33 kb)

References

  1. Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235. doi:10.1007/s00442-004-1519-1 CrossRefPubMedGoogle Scholar
  2. Baldock JA, Skjemstad JO (2000) Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org Geochem 31:697–710CrossRefGoogle Scholar
  3. Belder P, Bouman BAM, Cabangon R, Guoan L, Quilang EJP, Yuanhua L, Spiertz JHJ, Tuong TP (2004) Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agric Water Manag 65:193–210. doi:10.1016/j.agwat.2003.09.002 CrossRefGoogle Scholar
  4. Bhuiyan SI (1992) Water management in relation to crop production: case study on rice. Outlook Agric 21:293–299Google Scholar
  5. Bouman BAM, Tuong TP (2001) Field water management to save water and increase its productivity in irrigated lowland rice. Agric Water Manag 1615:1–20. doi:10.1016/S0378-3774(00)00128-1 Google Scholar
  6. Cambardella CA, Elliot ET (1993) Carbon and nitrogen distribution in aggregates from cultivated and grassland soils. Soil Sci Soc Am J 57:1071–1076CrossRefGoogle Scholar
  7. Canarini A, Dijkstra FA (2015) Dry-rewetting cycles regulate wheat carbon rhizodeposition, stabilization and nitrogen cycling. Soil Biol Biochem 81:195–203. doi:10.1016/j.soilbio.2014.11.014 CrossRefGoogle Scholar
  8. Carter MR (1996) Analysis of soil organic matter storage in agroecosystems. In: Carter MR, Stewart BA (eds) Structure and organic matter storage in agricultural soils. CRC Publishers, Boca Raton, pp 3–11Google Scholar
  9. Chenu C, Plante AT (2006) Clay-sized organo-mineral complexes in a cultivation chronosequence: revisiting the concept of the “primary organo-mineral complex.”. Eur J Soil Sci 57:596–607. doi:10.1111/j.1365-2389.2006.00834.x CrossRefGoogle Scholar
  10. Fan M, Shen J, Yuan L, Jiang R, Chen X, Davies WJ, Zhang F (2012) Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. J Exp Bot 63:13–24. doi:10.1093/jxb/err248 CrossRefPubMedGoogle Scholar
  11. Finzi AC, Abramoff RZ, Spiller KS, Brzostek E, Darby BA, Kramer MA, Phillips RP (2015) Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Glob Chang Biol 21:2082–2094. doi:10.1111/gcb.12816 CrossRefPubMedGoogle Scholar
  12. Ge T, Yuan H, Zhu H, Wu X, Nie S, Liu C, Tong C, Wu J, Brookes P (2012) Biological carbon assimilation and dynamics in a flooded rice-soil system. Soil Biol Biochem 48:39–46. doi:10.1016/j.soilbio.2012.01.009 CrossRefGoogle Scholar
  13. Ge T, Liu C, Yuan H, Zhao Z, Wu X, Zhu Z, Brookes P, Wu J (2015) Tracking the photosynthesized carbon input into soil organic carbon pools in a rice soil fertilized with nitrogen. Plant Soil 392:17–25. doi:10.1007/s11104-014-2265-8 CrossRefGoogle Scholar
  14. Gong ZT, Zhang GL, Chen ZC (eds) (2009) Pedogenesis and soil taxonomy. Sci-ence Press, Beijing, pp 613–626 in ChineseGoogle Scholar
  15. Grayston SJ, Vaughan D, Jones D (1997) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56. doi:10.1016/s0929-1393(96)00126-6 CrossRefGoogle Scholar
  16. He Y, Siemens J, Amelung W, Goldbach H, Wassmann R, Alberto MCR, Lücke A, Lehndorff E (2015) Carbon release from rice roots under paddy rice and maize-paddy rice cropping. Agric Ecosyst Environ 210:15–24. doi:10.1016/j.agee.2015.04.029 CrossRefGoogle Scholar
  17. Helal HM, Sauerbeck D (1989) Carbon Turnover in the Rhizosphere. J Plant Nutr Soil Sci 152(2): 211–216. doi:10.1002/jpln.19891520212
  18. Henry A, Doucette W, Norton J, Bugbee B (2007) Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress. J Environ Qual 36:904–912. doi:10.2134/jeq2006.0425sc CrossRefPubMedGoogle Scholar
  19. Hossain MF, White SK, Elahi SF, Sultana N, Choudhury MHK, Alam QK, Rother JA, Gaunt JL (2005) The efficiency of nitrogen fertiliser for rice in Bangladeshi farmers’ fields. F Crop Res 93:94–107. doi:10.1016/j.fcr.2004.09.017 CrossRefGoogle Scholar
  20. Huck MG, Klepper B, Taylor HM (1970) Diurnal variations in root diameter. Plant Physiol 45:529–530CrossRefPubMedPubMedCentralGoogle Scholar
  21. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptationGoogle Scholar
  22. Jastrow JD (1996) Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biol Biochem 28:665–676. doi:10.1016/0038-0717(95)00159-X CrossRefGoogle Scholar
  23. Jastrow JD, Miller RM (1998) Soil aggregate stabilization and carbon sequestration: feedbacks through organomineral associations. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Soil process carbon cycle. CRC Press LLC, Boca Raton, pp 207–223Google Scholar
  24. Jastrow JD, Miller RM, Boutton TW (1996) Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance. Soil Sci Soc Am J 60:801. doi:10.2136/sssaj1996.03615995006000030017x CrossRefGoogle Scholar
  25. Jones DL, Darrah PR (1994) Amino-acid influx at the soil-root interface of Zea-Mays L and its implications in the rhizosphere. Plant Soil 163:1–12CrossRefGoogle Scholar
  26. Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. Review. Zeitschrift für Pflanzenernährung und Bodenkd 163:421–431. doi: 10.1002/1522-2624(200008)163:4<421::aid-jpln421>3.0.co;2-r
  27. Kuzyakov Y, Ehrensberger H, Stahr K (2001) Carbon partitioning and below-ground translocation by Lolium perenne. Soil Biol Biochem 33:61–74. doi:10.1016/S0038-0717(00)00115-2 CrossRefGoogle Scholar
  28. Liljeroth E, Van Veen JA, Miller HJ (1990) Assimilate translocation to the rhizosphere of two wheat lines and subsequent utilization by rhizosphere microorganisms at two soil nitrogen concentrations. Soil Biol Biochem 22:1015–1021. doi:10.1016/0038-0717(90)90026-V CrossRefGoogle Scholar
  29. Lin Y, Hu Y g, Ren C z, Guo L c, Wang C l, Jiang Y, Wang XJ, Phendukani H, Zeng ZH (2013) Effects of nitrogen application on chlorophyll fluorescence parameters and leaf gas exchange in naked oat. J Integr Agric 12:2164–2171. doi:10.1016/S2095-3119(13)60346-9 CrossRefGoogle Scholar
  30. von Lützow M, Kögel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner E (2007) SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biol Biochem 39:2183–2207. doi:10.1016/j.soilbio.2007.03.007 CrossRefGoogle Scholar
  31. Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10. doi:10.1007/BF00011685 CrossRefGoogle Scholar
  32. Miltner A, Bombach P, Schmidt-Brücken B, Kästner M (2012) SOM genesis: microbial biomass as a significant source. Biogeochemistry 111:41–55. doi:10.1007/s10533-011-9658-z CrossRefGoogle Scholar
  33. Mishra A, Salokhe VM (2011) Rice root growth and physiological responses to SRI water management and implications for crop productivity. Paddy Water Environ 9:41–52. doi:10.1007/s10333-010-0240-4 CrossRefGoogle Scholar
  34. Mwafulirwa L, Baggs EM, Russell J, George T, Morley N, Sim A, de la Fuente Canto C, Paterson E (2016) Barley genotype influences stabilization of rhizodeposition-derived C and soil organic matter mineralization. Soil Biol Biochem 95:60–69. doi:10.1016/j.soilbio.2015.12.011 CrossRefGoogle Scholar
  35. Oades JM (1984) Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil 76:319–337. doi:10.1007/BF02205590 CrossRefGoogle Scholar
  36. Ohnishi M, Horie T, Homma K, Supapoj N (1999) Nitrogen management and cultivar effects on rice yield and nitrogen use efficiency in Northeast ThailandGoogle Scholar
  37. Pan G, Wu L, Li L, Zhang X, Gong W, Wood Y (2008) Organic carbon stratification and size distribution of three typical paddy soils from Taihu Lake Region, China. J Environ Sci (China) 20:456–463. doi:10.1016/s1001-0742(08)62079-3 CrossRefGoogle Scholar
  38. Pausch J, Kuzyakov Y (2011) Photoassimilate allocation and dynamics of hotspots in roots visualized by 14C phosphor imaging. J Plant Nutr Soil Sci 174:12–19. doi:10.1002/jpln.200900271 CrossRefGoogle Scholar
  39. Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C (2015) Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol Fertil Soils 51:403–415. doi:10.1007/s00374-015-0996-1 CrossRefGoogle Scholar
  40. Puget P, Chenu C, Balesdent J (2000) Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates. Eur J Soil Sci 51:595–605. doi:10.1046/j.1365-2389.2000.00353.x CrossRefGoogle Scholar
  41. Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394CrossRefPubMedGoogle Scholar
  42. Schumacher TE, Smucker AJ (1985) Carbon transport and root respiration of split root systems of Phaseolus vulgaris subjected to short term localized anoxia. Plant Physiol 78:359–364. doi:10.1104/pp.78.2.359 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Russel RS (1977) Plant root systems: their function and interaction with the soil. In: European Plant Biology series. p 298Google Scholar
  44. Shangguan ZP, Shao MA, Ren SJ, Zhang LM, Xue Q (2004) Effect of nitrogen on root and shoot relations and gas exchange in winter wheat. Bot Bull Acad Sin 45:49–54Google Scholar
  45. Sherson SM, Alford HL, Forbes SM, Wallace G, Smith SM (2003) Roles of cell-wall invertases and monosaccharide transporters in the growth and development of Arabidopsis. J Exp Bot 54:525–531. doi:10.1093/jxb/erg055 CrossRefPubMedGoogle Scholar
  46. Six J, Elliott ET, Paustian K, Doran JW (1998) Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci Soc Am J 62:1367. doi:10.2136/sssaj1998.03615995006200050032x CrossRefGoogle Scholar
  47. Six J, Elliott ET, Paustian K (1999) Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Sci Soc Am J 63:1350–1358. doi:10.2136/sssaj1999.6351350x CrossRefGoogle Scholar
  48. Six J, Paustian K, Elliott ETT, Combrink C (2000) Soil structure and organic matter: I. Distribution of aggregate-size classes. Soil Sci Soc Am J 64:681–689. doi:10.2136/sssaj2000.642681x CrossRefGoogle Scholar
  49. Sposito G, Skipper NT, Sutton R, Park S, Soper AK, Greathouse JA (1999) Surface geochemistry of the clay minerals. In: National Academy of Sciences of theUnited States of America. pp 3358–3364Google Scholar
  50. Su YH, Zhu YG (2008) Uptake of selected PAHs from contaminated soils by rice seedlings (Oryza sativa) and influence of rhizosphere on PAH distribution. Environ Pollut 155:359–365. doi:10.1016/j.envpol.2007.11.008 CrossRefPubMedGoogle Scholar
  51. Swinnen J, Van VJA, Merckx R (1994) 14C pulse-labelling of field-grown spring wheat: an evaluation of its use in rhizosphere carbon budget estimations. Soil Biol Biochem 26:161–170CrossRefGoogle Scholar
  52. Thakur AK, Rath S, Patil DU, Kumar A (2011) Effects on rice plant morphology and physiology of water and associated management practices of the system of rice intensification and their implications for crop performance. Paddy Water Environ 9:13–24CrossRefGoogle Scholar
  53. Thornton B, Paterson E, Midwood AJ, Sim A, Pratt SM (2004) Contribution of current carbon assimilation in supplying root exudates of Lolium perenne measured using steady-state 13C labelling. Physiol Plant 120:434–441. doi:10.1111/j.0031-9317.2004.00250.x CrossRefPubMedGoogle Scholar
  54. Tian J, Dippold M, Pausch J, Blagodatskaya E, Fan M, Li X, Kuzyakov Y (2013a) Microbial response to rhizodeposition depending on water regimes in paddy soils. Soil Biol Biochem 65:195–203. doi:10.1016/j.soilbio.2013.05.021 CrossRefGoogle Scholar
  55. Tian J, Pausch J, Fan M, Li X, Tang Q, Kuzyakov Y (2013b) Allocation and dynamics of assimilated carbon in rice-soil system depending on water management. Plant Soil 363:273–285. doi:10.1007/s11104-012-1327-z CrossRefGoogle Scholar
  56. Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 33:141–163. doi:10.1111/j.1365 CrossRefGoogle Scholar
  57. Virto I, Barré P, Chenu C (2008) Microaggregation and organic matter storage at the silt-size scale. Geoderma 146:326–335. doi:10.1016/j.geoderma.2008.05.021 CrossRefGoogle Scholar
  58. Voisin A-S, Salon C, Munier-Jolain NG, Ney B (2002) Effect of mineral nitrogen on nitrogen nutrition and biomass partitioning between the shoot and roots of pea (Pisum sativum L.) Plant Soil 242:251–262. doi:10.1023/A:1016214223900 CrossRefGoogle Scholar
  59. Wang M, Shi S, Lin F, Hao Z, Jiang P, Dai G (2012) Effects of soil water and nitrogen on growth and photosynthetic response of Manchurian ash (Fraxinus mandshurica) seedlings in Northeastern China. PLoS One. doi:10.1371/journal.pone.0030754 Google Scholar
  60. Whiteley GM, Dexter AR (1984) Displacement of soil aggregates by elongating roots and emerging shoots of crop plants. Plant Soil 77:131–140. doi:10.1007/BF02182917 CrossRefGoogle Scholar
  61. Wichern F, Andreeva D, Joergensen RG, Kuzyakov Y (2011) Stem labeling results in different patterns of 14C rhizorespiration and 15N distribution in plants compared to natural assimilation pathways. J Plant Nutr Soil Sci 174:732–741. doi:10.1002/jpln.201000206 CrossRefGoogle Scholar
  62. Xu Y, Ge J, Tian S, Li S, Nguy-Robertson AL, Zhan M, Cao C (2015) Effects of water-saving irrigation practices and drought resistant rice variety on greenhouse gas emissions from a no-till paddy in the central lowlands of China. Sci Total Environ 505:1043–1052. doi:10.1016/j.scitotenv.2014.10.073 CrossRefPubMedGoogle Scholar
  63. Yang C, Yang L, Yang Y, Ouyang Z (2004) Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agric Water Manag 70:67–81. doi:10.1016/j.agwat.2004.05.003 CrossRefGoogle Scholar
  64. Ye Y, Liang X, Chen Y, Liu J, Gu J, Guo R, Li L (2013) Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use. F Crop Res 144:212–224. doi:10.1016/j.fcr.2012.12.003 CrossRefGoogle Scholar
  65. Yuan H, Zhu Z, Liu S, Ge T, Jing H, Li B, Liu Q, Lynn TM, Wu J, Kuzyakov Y (2016) Microbial utilization of rice root exudates: 13C labeling and PLFA composition. Biol Fertil Soils. doi:10.1007/s00374-016-1101-0 Google Scholar
  66. Zhang H, Xue Y, Wang Z, Yang J, Zhang J (2009) An alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Sci 49:2246–2260. doi:10.2135/cropsci2009.02.0099 CrossRefGoogle Scholar
  67. Zhu Z, Ge T, Xiao M, Yuan H, Wang T, Liu S, Atere CT, Wu J, Kuzyakov Y (2016) Belowground carbon allocation and dynamics under rice cultivation depends on soil organic matter content. Plant Soil:1–12. doi:10.1007/s11104-016-3005-z

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Cornelius Talade Atere
    • 1
  • Tida Ge
    • 1
  • Zhenke Zhu
    • 1
  • Chengli Tong
    • 1
  • Davey L. Jones
    • 1
    • 2
  • Olga Shibistova
    • 3
    • 4
  • Georg Guggenberger
    • 1
    • 3
  • Jinshui Wu
    • 1
  1. 1.Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
  2. 2.School of Environment, Natural Resources and GeographyBangor UniversityWalesUK
  3. 3.Institute of Soil ScienceLeibniz Universität HannoverHannoverGermany
  4. 4.VN Sukachev Institute of ForestSB RASKrasnoyarskRussian Federation

Personalised recommendations