Skip to main content

Advertisement

Log in

Nonlinear response of soil ammonia emissions to fertilizer nitrogen

  • Short Communication
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Ammonia (NH3) is an important atmospheric pollutant that threatens ecosystem and human health. Synthetic nitrogen (N) fertilizer applications are a major source of atmospheric NH3. Most of current bottom-up estimates assume that the NH3 emission response to increasing N application rates is linear, and thus constant emission factors (EFs) are used. However, increasing evidence suggests that NH3 emissions increase exponentially with increasing N inputs. In the present study, we conducted a meta-analysis to generalize the relationship between N inputs and NH3 emissions. Overall, the change in EF per unit of additional N fertilizer input (ΔEF) was positive from 70 experiments with at least three N application rates, suggesting that NH3 emissions in response to increasing N additions grow at a rate higher than linear. Compared to our ΔEF model, the 10% EF model used by Intergovernmental Panel on Climate Change overestimated NH3 emissions when fertilizer N is applied at low levels, but underestimated NH3 emissions when N is applied in excess. Therefore, our results suggest that replacing the constant EF with the N-rate-dependent EF could improve the accuracy of NH3 emission estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Ashraf M, Mahmood T, Azam F (2003) Translocation and recovery of 15N-labelled N derived from foliar uptake of 15NH3 by rice (Oryza sativa L.) cultivars. Biol Fertil Soils 38:257–260. doi:10.1007/s00374-003-0649-7

    Article  CAS  Google Scholar 

  • Anand KV, Kubavat D, Trivedi K, Agarwal PK, Wheeler C, Ghosh A (2015) Long-term application of Jatropha press cake promotes seed yield by enhanced soil organic carbon accumulation, microbial biomass and enzymatic activities in soils of semi-arid tropical wastelands. Eur J Soil Biol 69:57–65. doi:10.1016/j.ejsobi.2015.05.005

    Article  CAS  Google Scholar 

  • Bash JO, Walker JT, Katul GG, Jones MR, Nemitz E, Robarge WP (2010) Estimation of in-canopy ammonia sources and sinks in a fertilized Zea mays field. Environ Sci Technol 44:1683–1689. doi:10.1021/es9037269

    Article  CAS  PubMed  Google Scholar 

  • Behera SN, Sharma M, Aneja VP, Balasubramanian R (2013) Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environ Sci Pollut Res 20:8092–8131. doi:10.1007/s11356-013-2051-9

    Article  CAS  Google Scholar 

  • Bindraban PS, Dimkpa C, Nagarajan L, Roy A, Rabbinge R (2015) Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biol Fertil Soils 51:897–911. doi:10.1007/s00374-015-1039-7

    Article  CAS  Google Scholar 

  • Bouwman AF, Boumans LJM, Batjes NH (2002) Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands. Glob Biogeochem Cycles 16. doi:10.1029/2000GB001389

  • Cao Y, Yin B (2015) Effects of integrated high-efficiency practice versus conventional practice on rice yield and N fate. Agric Ecosyst Environ 202:1–7. doi:10.1016/j.agee.2015.01.001

    Article  Google Scholar 

  • Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Karl E, Karl E, Lancelot C, Gene E, Gene E (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323:1014–1015. doi:10.1126/science.1167755

    Article  CAS  PubMed  Google Scholar 

  • Cui Z, Wang G, Yue S, Wu L, Zhang W, Zhang F, Chen X (2014) Closing the N-use efficiency gap to achieve food and environmental security. Environ Sci Technol 48:5780–5787. doi:10.1021/es5007127

    Article  CAS  PubMed  Google Scholar 

  • de Morais RF, Boddey RM, Urquiaga S, Jantalia CP, Alves BJ (2013) Ammonia volatilization and nitrous oxide emissions during soil preparation and N fertilization of elephant grass (Pennisetum purpureum Schum.). Soil Biol Biochem 64:80–88. doi:10.1016/j.soilbio.2013.04.007

    Article  Google Scholar 

  • Gericke D, Pacholski A, Kage H (2011) Measurement of ammonia emissions in multi-plot field experiments. Biosyst Eng 108:164–173. doi:10.1016/j.biosystemseng.2010.11.009

    Article  Google Scholar 

  • Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KW, Vitousek PM, Zhang FS (2010) Significant acidification in major Chinese croplands. Science 327:1008–1010. doi:10.1126/science.1182570

    Article  CAS  PubMed  Google Scholar 

  • Huang P, Zhang J, Zhu A, Xin X, Zhang C, Ma D, Yang S, Mirza Z, Wu S (2015) Coupled water and nitrogen (N) management as a key strategy for the mitigation of gaseous N losses in the Huang-Huai-Hai Plain. Biol Fertil Soils 51:333–342. doi:10.1007/s00374-014-0981-0

    Article  CAS  Google Scholar 

  • Huang RJ, Zhang Y, Bozzetti C, Ho KF, Cao JJ, Han Y, Daellenbach KR, Slowik JG, Platt SM, Canonaco F, Zotter P (2014) High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514:218–222. doi:10.1038/nature13774

    CAS  PubMed  Google Scholar 

  • Huang S, Lv W, Bloszies S, Shi Q, Pan X, Zeng Y (2016) Effects of fertilizer management practices on yield-scaled ammonia emissions from croplands in China: a meta-analysis. Field Crops Res 192:118–125. doi:10.1016/j.fcr.2016.04.023

    Article  Google Scholar 

  • Huang X, Song Y, Li M, Li J, Huo Q, Cai X, Zhu T, Hu M, Zhang H (2012) A high-resolution ammonia emission inventory in China. Glob Biogeochem Cycles 26. doi:10.1029/2011GB004161

  • Hungate BA, van Groenigen KJ, Six J, Jastrow JD, Luo Y, De Graaff MA, van Kessel C, Osenberg CW (2009) Assessing the effect of elevated carbon dioxide on soil carbon: a comparison of four meta-analyses. Glob Chang Biol 15:2020–2034. doi:10.1111/j.1365-2486.2009.01866.x

    Article  Google Scholar 

  • IPCC 2006 International panel for climate change guidelines for national greenhouse gas inventories

  • Kang Y, Liu M, Song Y (2016) High-resolution ammonia emissions inventories in China from 1980 to 2012. Atmos Chem Phys 16:2043–2058. doi:10.5194/acp-16-2043-2016

    Article  CAS  Google Scholar 

  • Li H, Liang X, Chen Y, Tian G, Zhang Z (2008) Ammonia volatilization from urea in rice fields with zero-drainage water management. Agric Water Manag 95:887–894. doi:10.1016/j.agwat.2007.05.016

    Article  Google Scholar 

  • Li J, Shi Y, Luo J, Zaman M, Houlbrooke D, Ding W, Ledgard S, Ghani A (2014a) Use of nitrogen process inhibitors for reducing gaseous nitrogen losses from land-applied farm effluents. Biol Fertil Soils 50:133–145. doi:10.1007/s00374-013-0842-2

    Article  Google Scholar 

  • Li X, Xia L, Yan X (2014b) Application of membrane inlet mass spectrometry to directly quantify denitrification in flooded rice paddy soil. Biol Fertil Soils 50:891–900. doi:10.1007/s00374-014-0910-2

    Article  CAS  Google Scholar 

  • Liu X, Zhang Y, Han W, Shen J, Cui Z, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A (2013) Enhanced nitrogen deposition over China. Nature 494:459–462. doi:10.1038/nature11917

    Article  CAS  PubMed  Google Scholar 

  • Malhi SS, McGill WB (1982) Nitrification in three Alberta soils: effect of temperature, moisture and substrate concentration. Soil Biol Biochem 14:393–399. doi:10.1016/0038-0717(82)90011-6

    Article  CAS  Google Scholar 

  • Miola EC, Aita C, Rochette P, Chantigny MH, Angers DA, Bertrand N, Gasser MO (2015) Static chamber measurements of ammonia volatilization from manured soils: impact of deployment duration and manure characteristics. Soil Sci Soc Am J 79:305–313. doi:10.2136/sssaj2014.07.0305

    Article  CAS  Google Scholar 

  • Ni K, Köster JR, Seidel A, Pacholski A (2015) Field measurement of ammonia emissions after nitrogen fertilization—a comparison between micrometeorological and chamber methods. Eur J Agron 71:115–122. doi:10.1016/j.eja.2015.09.004

    Article  CAS  Google Scholar 

  • Norman JS, Barrett JE (2014) Substrate and nutrient limitation of ammonia-oxidizing bacteria and archaea in temperate forest soil. Soil Biol Biochem 69:141–146. doi:10.1016/j.soilbio.2013.11.003

    Article  CAS  Google Scholar 

  • Nye PH (1992) Towards the quantitative control of crop production and quality. II. The scientific basis for guiding fertilizer and management practice, particularly in poorer countries. J Plant Nutr 15:1151–1173. doi:10.1080/01904169209364387

    Article  CAS  Google Scholar 

  • Paulot F, Jacob DJ, Pinder RW, Bash JO, Travis K, Henze DK (2014) Ammonia emissions in the United States, European Union, and China derived by high-resolution inversion of ammonium wet deposition data: interpretation with a new agricultural emissions inventory (MASAGE_NH3). J Geophys Res 119:4343–4364. doi:10.1002/2013JD021130

    CAS  Google Scholar 

  • Peng S, Buresh RJ, Huang J, Yang J, Zou Y, Zhong X, Wang G, Zhang F (2006) Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Res 96:37–47. doi:10.1016/j.fcr.2005.05.004

    Article  Google Scholar 

  • Pittelkow CM, Liang X, Linquist BA, van Groenigen KJ, Lee J, Lundy ME, van Gestel N, Six J, Venterea RT, van Kessel C (2015) Productivity limits and potentials of the principles of conservation agriculture. Nature 517:365–368. doi:10.1038/nature13809

    Article  CAS  PubMed  Google Scholar 

  • Rochette P, Angers DA, Chantigny MH, Gasser MO, MacDonald JD, Pelster DE, Bertrand N (2013) NH3 volatilization, soil concentration and soil pH following subsurface banding of urea at increasing rates. Can J Soil Sci 93:261–268. doi:10.4141/cjss2012-095

    Article  CAS  Google Scholar 

  • Rosenberg MS, Adams DC, Gurevitch J (2000) Metawin: statistical software for meta-analysis, version 2.1. Sinauer Associates Inc., Sunderland, MA

    Google Scholar 

  • Rozas H, Studdert GA, Andrade FH (1999) No-till maize nitrogen uptake and yield. Agron J 66:950–955. doi:10.2134/agronj1999.916950x

    Article  Google Scholar 

  • Shang Q, Gao C, Yang X, Wu P, Ling N, Shen Q, Guo S (2014) Ammonia volatilization in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiments. Biol Fertil Soils 50:715–725. doi:10.1007/s00374-013-0891-6

    Article  CAS  Google Scholar 

  • Shcherbak I, Millar N, Robertson GP (2014) Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc Natl Acad Sci 111:9199–9204. doi:10.1073/pnas.1322434111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen LD, Zheng PH, Ma SJ (2016) Nitrogen loss through anaerobic ammonium oxidation in agricultural drainage ditches. Biol Fertil Soils 52:127–136. doi:10.1007/s00374-015-1058-4

    Article  CAS  Google Scholar 

  • Shen W, Lin X, Shi W (2010) Higher rates of nitrogen fertilization decrease soil enzyme activities, microbial functional diversity and nitrification capacity in a Chinese polytunnel greenhouse vegetable land. Plant Soil 337:137–150. doi:10.1007/s11104-010-0511-2

    Article  CAS  Google Scholar 

  • Sommer SG, Schjoerring JK, Denmead OT (2004) Ammonia emission from mineral fertilizers and fertilized crops. Adv Agron 82:557–622. doi:10.1016/S0065-2113(03)82008-4

    Article  CAS  Google Scholar 

  • Thapa R, Chatterjee A, Johnson JM, Awale R (2015) Stabilized nitrogen fertilizers and application rate influence nitrogen losses under rainfed spring wheat. Agron J 107:1885–1894. doi:10.2134/agronj15.0081

    Article  CAS  Google Scholar 

  • Ti C, Luo Y, Yan X (2015) Characteristics of nitrogen balance in open-air and greenhouse vegetable cropping systems of China. Environ. Sci Pollut Res 22:18508–18518. doi:10.1007/s11356-015-5277-x

    Article  CAS  Google Scholar 

  • Turner DA, Edi RE, Chen D, Freney JR, Denmead OT (2012) Ammonia volatilization from nitrogen fertilizers applied to cereals in two cropping areas of southern Australia. Nutr Cycl Agroecosys 93:113–126. doi:10.1007/s10705-012-9504-2

    Article  CAS  Google Scholar 

  • van der Molen J, van Faassen HG, Leclerc MY, Vriesema R, Chardon WJ (1990) Ammonia volatilization from arable land after application of cattle slurry: derivation of a transfer model. Neth J Agric Sci 38:239–254

    Google Scholar 

  • van Groenigen KJ, van Kessel C, Hungate BA (2013) Increased greenhouse-gas intensity of rice production under future atmospheric conditions. Nature Clim Change 3:288–291. doi:10.1038/nclimate1712

    Article  Google Scholar 

  • Wang S, Nan J, Shi C (2015) Atmospheric ammonia and its impacts on regional air quality over the megacity of Shanghai, China. Sci Rep 5:15842. doi:10.1038/srep15842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu P, Zhang Y, Gong W (2015) An inventory of the emission of ammonia from agricultural fertilizer application in China for 2010 and its high-resolution spatial distribution. Atmos Environ 115:141–148. doi:10.1016/j.atmosenv.2015.05.020

    Article  CAS  Google Scholar 

  • Yan X, Akimoto H, Ohara T (2003) Estimation of nitrous oxide, nitric oxide and ammonia emissions from croplands in East, Southeast and South Asia. Glob Chang Biol 9:1080–1096. doi:10.1046/j.1365-2486.2003.00649.x

    Article  Google Scholar 

  • Zhang L, Wright LP, Asman WAH (2010) Bi-directional air-surface exchange of atmospheric ammonia: a review of measurements and a development of a big-leaf model for applications in regional-scale air-quality models. J Geophys Res 115:D20310. doi:10.1029/2009JD013589

    Article  Google Scholar 

  • Zhang Y, Luan S, Chen L, Shao M (2011) Estimating the volatilization of ammonia from synthetic nitrogenous fertilizers used in China. J Environ Manag 92:480–493. doi:10.1016/j.jenvman.2010.09.018

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Plan of China (2016YFD0300903, 2015BAC02B02), Special Fund for Agro-scientific Research in the Public Interest (201503122), and the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Huang.

Electronic supplementary material

ESM 1

(DOCX 238 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Deng, A., Bloszies, S. et al. Nonlinear response of soil ammonia emissions to fertilizer nitrogen. Biol Fertil Soils 53, 269–274 (2017). https://doi.org/10.1007/s00374-017-1175-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-017-1175-3

Keywords

Navigation