Biology and Fertility of Soils

, Volume 53, Issue 2, pp 159–169 | Cite as

Abundance and diversity of sulphur-oxidising bacteria and their role in oxidising elemental sulphur in cropping soils

  • Cuicui Zhao
  • Vadakattu V. S. R. GuptaEmail author
  • Fien Degryse
  • Mike J. McLaughlin
Original Paper


There is an increasing interest in elemental S as a S fertiliser source, but to be available to plants, elemental S has to be oxidised to sulphate. Elemental S oxidation is known to be affected by soil properties and environmental conditions, but it is still unclear if elemental S oxidation is related to the abundance and diversity of S-oxidising bacteria in cropping soils. In this study, we investigated the abundance and diversity of S-oxidising bacteria by targeting a functional gene (soxB) and assessed their relationship with elemental S oxidation in ten cropping soils. Positive correlations between soil C, N and S contents on the one hand and the abundances of soxB and 16S ribosomal deoxyribonucleic acid (rRNA) genes on the other suggested that the abundances of S oxidising bacteria in particular and of bacteria in general depend on soil C and nutrient supply. Both soxB and 16S rRNA gene abundances were significantly correlated with the oxidation rate of elemental S (P < 0.05). In addition, more than 80% of the variation in the oxidation rate of elemental S could be explained by the combination of soxB or 16S rRNA gene abundances and soil pH, suggesting that pH not only affected bacterial abundances but also their activity during elemental S oxidation. Clone libraries constructed with the soxB primers showed genera belonging to Alphaproteobacteria, Betaproteobacteria and Deltaproteobacteria and Actinobacteria. The phylogenetic diversity and relative distribution of soxB clones revealed great differences across soils. However, no direct linkage was found between the diversity of S-oxidising bacteria and elemental S oxidation rate.


Sulphur Oxidisers soxB Bacteria Diversity 



The authors would like to acknowledge China Scholarship Council for providing the scholarship and Mosaic Company for support. Special thanks go to Marcus Hicks for his significant assistance with extraction and characterisation of soil DNA. Nilangani Harris, Belinda Stummer, Rosemary Warren and Adrienne Gregg are also acknowledged for their assistance with molecular techniques.

Supplementary material

374_2016_1162_MOESM1_ESM.docx (17 kb)
Table S1 (DOCX 16.9 kb)
374_2016_1162_MOESM2_ESM.docx (281 kb)
Fig. S1 (DOCX 280 kb)


  1. Abbott EV (1923) The occurrence and action of fungi in soil. Soil Sci 16:207–216CrossRefGoogle Scholar
  2. Anandham R, Indiragandhi P, Madhaiyan M (2008) Chemolithoautotrophic oxidation of thiosulfate and phylogenetic distribution of sulfur oxidation gene (soxB) in rhizobacteria isolated from crop plants. Res Microbiol 159:579–589. doi: 10.1016/j.resmic.2008.08.007 CrossRefPubMedGoogle Scholar
  3. Aulakh MS, Jaggi RC, Sharma R (2002) Mineralization-immobilization of soil organic S and oxidation of elemental S in subtropical soils under flooded and nonflooded conditions. Biol Fertil Soils 35:197–203. doi: 10.1007/s00374-002-0461-9 CrossRefGoogle Scholar
  4. Bååth E, Anderson TH (2003) Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol Biochem 35:955–963. doi: 10.1016/S0038-0717(03)00154-8 CrossRefGoogle Scholar
  5. Chapman SJ (1990) Thiobacillus populations in some agricultural soils. Soil Biol Biochem 22:479–482. doi: 10.1016/0038-0717(90)90181-x CrossRefGoogle Scholar
  6. Chapman SJ (1997) Powdered elemental sulphur: oxidation rate, temperature dependence and modelling. Nutr Cycl Agroecosys 47:19–28. doi: 10.1007/bf 01985715 CrossRefGoogle Scholar
  7. Czaban J, Kobus J (2000) Oxidation of elemental sulfur by bacteria and fungi in soil. Acta Microbiol Pol 49:135–147PubMedGoogle Scholar
  8. Deb C, Stackebrandt E, Pradella S, Saha A, Roy P (2004) Phylogenetically diverse new sulfur chemolithotrophs of α-proteobacteria isolated from Indian soils. Curr Microbiol 48:452–458. doi: 10.1007/s00284-003-4250-y CrossRefPubMedGoogle Scholar
  9. Delmont TO, Francioli D, Jacquesson S, Laoudi S, Nesme MJ, Ceccherini MT et al (2014) Microbial community development and unseen diversity recovery in inoculated sterile soil. Biol Fertil Soils 50:1069–1076. doi: 10.1007/s00374-10-0925-8 CrossRefGoogle Scholar
  10. Dick RP, Deng S (1991) Multivariate factor analysis of sulfur oxidation and rhodanese activity in soils. Biogeochemistry 12:87–101. doi: 10.1007/BF00001808 CrossRefGoogle Scholar
  11. El-Tarabily KA, Soaud AA, Saleh ME, Matsumoto S (2006) Isolation and characterisation of sulfur-oxidising bacteria, including strains of rhizobium, from calcareous sandy soils and their effects on nutrient uptake and growth of maize (Zea mays L.). Aust J Agric Res 57:101–111. doi: 10.1071/AR04237 CrossRefGoogle Scholar
  12. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. PNAS 103:626–631. doi: 10.1073/pnas.0507535103 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ghosh W, Bagchi A, Mandal S, Dam B, Roy P (2005) Tetrathiobacter kashmirensis gen. nov., sp. nov., a novel mesophilic, neutrophilic, tetrathionate-oxidizing, facultatively chemolithotrophic betaproteobacterium isolated from soil from a temperate orchard in Jammu and Kashmir, India. IJSEM 55:1779–1787. doi: 10.1099/ijs.0.63595-0 PubMedGoogle Scholar
  14. Ghosh W, Roy P (2007) Chemolithoautotrophic oxidation of thiosulfate, tetrathionate and thiocyanate by a novel rhizobacterium belonging to the genus Paracoccus. FEMS Microbiol Lett 270:124–131. doi: 10.1111/j.1574-6968.2007.00670.x CrossRefPubMedGoogle Scholar
  15. Gonzalez-Quiñones V, Stockdale EA, Banning NC, Hoyle FC, Sawada Y, Wherrett AD, Jones DL, Murphy DV (2011) Soil microbial biomass-interpretation and consideration for soil monitoring. Soil Res 49:287–304. doi: 10.1071/SR10203 CrossRefGoogle Scholar
  16. Graff A, Stubner S (2003) Isolation and molecular characterization of thiosulfate-oxidizing bacteria from an Italian rice field soil. Syst Appl Microbiol 26:445–452. doi: 10.1078/072320203322497482 CrossRefPubMedGoogle Scholar
  17. Gupta VVSR, Kroker SK, Hicks M, Davoren CW, Descheemaeker K, Llewellyn RS (2014) Nitrogen cycling in summer active perennial grass systems in South Australia: non-symbiotic nitrogen fixation. Crop Pasture Sci 65:1044–1056. doi: 10.1071/CP14109 CrossRefGoogle Scholar
  18. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series.Google Scholar
  19. Hayden HL, Drake J, Imhof M, Oxley APA, Norng S, Mele PM (2010) The abundance of nitrogen cycle genes amoA and nifH depends on land-uses and soil types in south-eastern Australia. Soil Biol Biochem 42:1774–1783. doi: 10.1016/j.soilbio.2010.06.015 CrossRefGoogle Scholar
  20. Heuer H, Krsek M, Baker P, Smalla K, Wellington EM (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microb 63:3233–3241Google Scholar
  21. Jørgensen BB (1990) The sulfur cycle of freshwater sediments: role of thiosulfate. LO 35:1329–1342. doi: 10.4319/lo.1990.35.6.1329 Google Scholar
  22. Jørgensen BB, Bak F (1991) Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark). Appl Environ Microb 57:847–856Google Scholar
  23. Jaggi RC, Aulakh MS, Sharma R (1999) Temperature effects on soil organic sulphur mineralization and elemental sulphur oxidation in subtropical soils of varying pH. Nutr Cycl Agroecosys 54:175–182. doi: 10.1023/A:1009770919296 CrossRefGoogle Scholar
  24. Janzen HH, Bettany JR (1987) The effect of temperature and water potential on sulfur oxidation in soils. Soil Sci 144:81–89. doi: 10.1097/00010694-19870626-00008 CrossRefGoogle Scholar
  25. Krishnani K, Gopikrishna G, Pillai SM, Gupta BP (2010) Abundance of Sulphur-oxidizing bacteria in coastal aquaculture using soxB gene analyses. Aquac Res 41:1290–1301. doi: 10.1111/j.1365-2109.2009.02415.x CrossRefGoogle Scholar
  26. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi: 10.1093/bioinformatics/btm404 CrossRefPubMedGoogle Scholar
  27. Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407–2415. doi: 10.1016/j.soilbio.2008.05.021 CrossRefGoogle Scholar
  28. Lawrence JR, Germida JJ (1988) Relationship between microbial biomass and elemental sulfur oxidation in agricultural soils. Soil Sci Soc Am J 52:672–677. doi: 10.2136/sssaj1988.03615995005200030014x CrossRefGoogle Scholar
  29. Lee A, Boswell CC, Watkinson JH (1988) Effect of particle size on the oxidation of elemental sulphur, thiobacilli numbers, soil sulphate, and its availability to pasture. New Zeal J Agr Res 31:179–186. doi: 10.1080/00288233.1988. 10417943 CrossRefGoogle Scholar
  30. Lee A, Watkinson JH, Orbell G, Bagyaraj J, Lauren DR (1987) Factors influencing dissolution of phosphate rock and oxidation of elemental sulphur in some New Zealand soils. New Zeal J Agr Res 30:373–385. doi: 10.1080/00288233. 1987.10421898 CrossRefGoogle Scholar
  31. Lefroy RDB, Sholeh BG (1997) Influence of sulfur and phosphorus placement, and sulfur particle size, on elemental sulfur oxidation and the growth response of maize (Zea mays). Aust J Soil Res 48:485–495. doi: 10.1071/A95054 CrossRefGoogle Scholar
  32. McCaskill MR, Blair GJ (1987) Particle size and soil texture effects on elemental sulfur oxidation. Agron J 79:1079–1083. doi: 10.2134/agronj1987.00021962007900060026x CrossRefGoogle Scholar
  33. Meyer B, Imhoff FJ, Kuever J (2007) Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria-evolution of the Sox sulfur oxidation enzyme system. Environ Microbiol 12:2957–2977. doi: 10.1111/j.1462-2920.2007.01407.x CrossRefGoogle Scholar
  34. O’Sullivan CA, Wakelin SA, Fillery IRP, Gregg AL, Roper MM (2012) Archaeal ammonia oxidisers are abundant in acidic, coarse-textured Australian soils. Soil Res 49:715–724. doi: 10.1071/SR11288 CrossRefGoogle Scholar
  35. Petersen DG, Blazewicz SJ, Firestone M, Herman DJ, Turetsky M, Waldrop M (2012) Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska. Environ Microbiol 14:993–1008. doi: 10.1111/j.1462-2920.2011.02679.x CrossRefPubMedGoogle Scholar
  36. Petri R, Podgorsek L, Imhoff JF (2001) Phylogeny and distribution of the soxB gene among thiosulfate-oxidizing bacteria. FEMS Microbiol Lett 197:171–178. doi: 10.1111/j.1574-6968.2001.tb10600.x CrossRefPubMedGoogle Scholar
  37. Quentmeier A, Hellwig P, Bardischewsky F, Grelle G, Kraft R, Friedrich CG (2003) Sulfur oxidation in Paracoccus pantotrophus: interaction of the sulfur-binding protein SoxYZ with the dimanganese SoxB protein. Biochem Biophys Res Commun 312:1011–1018. doi: 10.1016/j.bbrc.2003.11.021 CrossRefPubMedGoogle Scholar
  38. Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351. doi: 10.1038/ismej.2010.58 CrossRefPubMedGoogle Scholar
  39. Stubner S, Wind T, Conrad R (1998) Sulfur oxidation in rice field soil: activity, enumeration, isolation and characterization of thiosulfate-oxidizing bacteria. Syst Appl Microbiol 21:569–578. doi: 10.1016/S0723-2020(98)80069-6 CrossRefPubMedGoogle Scholar
  40. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Thomas F, Giblin AE, Cardon ZG, Sievert SM (2014) Rhizosphere heterogeneity shapes abundance and activity of sulfur-oxidizing bacteria in vegetated salt marsh sediments. Front Microbiol:5. doi: 10.3389/fmicb.2014.00309
  42. Tiedje JM, Asuming-Brempong S, Nüsslein K, Marsh TL, Flynn SJ (1999) Opening the black box of soil microbial diversity. Appl Soil Ecol 13:109–122. doi: 10.1016/S0929-1393(99)00026-8 CrossRefGoogle Scholar
  43. Tourna M, Maclean P, Condron L, O'Callaghan M, Wakelin SA (2014) Links between sulphur oxidation and sulphur-oxidising bacteria abundance and diversity in soil microcosms based on soxB functional gene analysis. FEMS Microbiol Ecol 88:538–549. doi: 10.1111/1574-6941.12323 CrossRefPubMedGoogle Scholar
  44. Varon-Lopez M, Dias ACF, Fasanella CC, Durrer A, Melo IS, Kuramae EE, Andreote FD (2014) Sulphur-oxidizing and sulphate-reducing communities in Brazilian mangrove sediments. Environ Microbiol 16:845–855. doi: 10.1111/1462-292 0.12237 CrossRefPubMedGoogle Scholar
  45. Vitolins M, Swaby R (1969) Activity of sulphur-oxidizing microorganisms in some Australian soils. Soil Res 7:171–183. doi: 10.1071/SR96901 71 CrossRefGoogle Scholar
  46. Wainwright M, Nevell W, Grayston S (1986) Effects of organic matter on sulphur oxidation in soil and influence of sulphur oxidation on soil nitrification. Plant Soil 96:369–376. doi: 10.1007/BF02375141 CrossRefGoogle Scholar
  47. Wakelin SA, Gupta VVSR, Forrester ST (2010) Regional and local factors affecting diversity, abundance and activity of free-living, N2-fixing bacteria in Australian agricultural soils. Pedobiologia 53:391–399. doi: 10.1016/j.pedobi. 2010.08.001 CrossRefGoogle Scholar
  48. Xia FF, Su Y, Wei XM, He YH, Wu ZC, Ghulam A, He R (2014) Diversity and activity of sulphur-oxidizing bacteria and sulphate-reducing bacteria in landfill cover soils. Lett Appl Microbiol 59:26–34. doi: 10.1111/lam.12240 CrossRefPubMedGoogle Scholar
  49. Zhao C, Degryse F, Gupta VVSR, McLaughlin MJ (2015) Elemental sulfur oxidation in Australian cropping soils. Soil Sci Soc Am J 79:89–96. doi: 10.2136/sssaj2014.08.0314 CrossRefGoogle Scholar
  50. Zhang X, Chen Q, Han X (2013) Soil bacterial communities respond to mowing and nutrient addition in a steppe ecosystem. PLoS One 8(12):e84210. doi: 10.1371/journal.pone.0084210 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Cuicui Zhao
    • 1
  • Vadakattu V. S. R. Gupta
    • 2
    Email author
  • Fien Degryse
    • 1
  • Mike J. McLaughlin
    • 1
    • 3
  1. 1.Fertiliser Technology Research Centre, Soil Science, School of Agriculture, Food and WineThe University of AdelaideGlen OsmondAustralia
  2. 2.CSIRO Agriculture and FoodAdelaideAustralia
  3. 3.CSIRO Land and WaterAdelaideAustralia

Personalised recommendations