Skip to main content

Tillage system affects fertilizer-induced nitrous oxide emissions

Abstract

Since the development of effective N2O mitigation options is a key challenge for future agricultural practice, we studied the interactive effect of tillage systems on fertilizer-derived N2O emissions and the abundance of microbial communities involved in N2O production and reduction. Soil samples from 0–10 cm and 10–20 cm depth of reduced tillage and ploughed plots were incubated with dairy slurry (SL) and manure compost (MC) in comparison with calcium ammonium nitrate (CAN) and an unfertilized control (ZERO) for 42 days. N2O and CO2 fluxes, ammonium, nitrate, dissolved organic C, and functional gene abundances (16S rRNA gene, nirK, nirS, nosZ, bacterial and archaeal amoA) were regularly monitored. Averaged across all soil samples, N2O emissions decreased in the order CAN and SL (CAN = 748.8 ± 206.3, SL = 489.4 ± 107.2 μg kg−1) followed by MC (284.2 ± 67.3 μg kg−1) and ZERO (29.1 ± 5.9 μg kg−1). Highest cumulative N2O emissions were found in 10–20 cm of the reduced tilled soil in CAN and SL. N2O fluxes were assigned to ammonium as source in CAN and SL and correlated positively to bacterial amoA abundances. Additionally, nosZ abundances correlated negatively to N2O fluxes in the organic fertilizer treatments. Soils showed a gradient in soil organic C, 16S rRNA, nirK, and nosZ with greater amounts in the 0–10 than 10–20 cm layer. Abundances of bacterial and archaeal amoA were higher in reduced tilled soil compared to ploughed soils. The study highlights that tillage system induced biophysicochemical stratification impacts net N2O emissions within the soil profile according to N and C species added during fertilization.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Balesdent J, Chenu C, Balabane M (2000) Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res 53:215–230. doi:10.1016/s0167-1987(99)00107-5

    Article  Google Scholar 

  • Baudoin E, Philippot L, Cheneby D, Chapuis-Lardy L, Fromin N, Bru D, Rabary B, Brauman A (2009) Direct seeding mulch-based cropping increases both the activity and the abundance of denitrifier communities in a tropical soil. Soil Biol Biochem 41:1703–1709. doi:10.1016/j.soilbio.2009.05.015

    CAS  Article  Google Scholar 

  • Behrens S, Azizian MF, McMurdie PJ, Sabalowsky A, Dolan ME, Semprini L, Spormann AM (2008) Monitoring abundance and expression of “dehalococcoides” species chloroethene-reductive dehalogenases in a tetrachloroethene-dechlorinating flow column. Appl Environ Microbiol 74:5695–5703. doi:10.1128/aem.00926-08

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Berner A, Hildermann I, Fließbach A, Pfiffner L, Niggli U, Mäder P (2008) Crop yield and soil fertility response to reduced tillage under organic management. Soil Tillage Res 101:89–96. doi:10.1016/j.still.2008.07.012

    Article  Google Scholar 

  • Bier RL, Bernhardt ES, Boot CM, Graham EB, Hall EK, Lennon JT, Nemergut D, Osborne BB, Ruiz-González C, Schimel JP, Waldrop MP, Wallenstein MD (2015) Linking microbial community structure and microbial processes: an empirical and conceptual overview. FEMS Microbiol Ecol. doi:10.1093/femsec/fiv113

    PubMed  Google Scholar 

  • Boz B, Mizanur Rahman M, Bottegal M, Basaglia M, Squartini A, Gumiero B, Casella S (2013) Vegetation, soil and hydrology management influence denitrification activity and the composition of nirK-type denitrifier communities in a newly afforested riparian buffer. New Biotechnol 30:675–684. doi:10.1016/j.nbt.2013.03.009

    CAS  Article  Google Scholar 

  • Braker G, Conrad R (2011) Diversity, structure, and size of N2O-producing microbial communities in soils—what matters for their functioning? In: Laskin AI, Sariaslani S, Gadd GM (Eds) Adv Appl Microbiol, vol 75. pp 33–70. doi:10.1016/b978-0-12-387046-9.00002-5

  • Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S (2013) Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos Trans R Soc Lond B Biol Sci 368:20130122. doi:10.1098/rstb.2013.0122

    Article  PubMed  PubMed Central  Google Scholar 

  • Canfield DE, Glazer AN, Falkowski PG (2010) The evolution and future of Earth’s nitrogen cycle. Science 330:192–196. doi:10.1126/science.1186120

    CAS  Article  PubMed  Google Scholar 

  • Dambreville C, Henault C, Bizouard F, Morvan T, Chaussod R, Germon J-C (2006) Compared effects of long-term pig slurry applications and mineral fertilization on soil denitrification and its end products (N2O, N2). Biol Fertil Soils 42:490–500. doi:10.1007/s00374-005-0040-y

    Article  Google Scholar 

  • Davidson EA (2009) The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat Geosci 2:659–662. doi:10.1038/ngeo608

    CAS  Article  Google Scholar 

  • Derpsch R, Friedrich T, Kassam A, Li H (2010) Current status of adoption of no-till farming in the world and some of its main benefits. Int J Agric Biol Eng 3:1–25. doi:10.3965/j.issn.1934-6344.2010.01.0-0

    Google Scholar 

  • Di HJ, Cameron KC, Shen JP, Winefield CS, O’Callaghan M, Bowatte S, He JZ (2009) Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nat Geosci 2:621–624. doi:10.1038/ngeo613

    CAS  Article  Google Scholar 

  • Domeignoz-Horta LA, Spor A, Bru D, Breuil M-C, Bizouard F, Léonard J, Philippot L (2015) The diversity of the N2O reducers matters for the N2O:N2 denitrification end-product ratio across an annual and a perennial cropping system. Front Microbiol 6:971. doi:10.3389/fmicb.2015.00971

    Article  PubMed  PubMed Central  Google Scholar 

  • Flessa H, Beese F (2000) Laboratory estimates of trace gas emissions following surface application and injection of cattle slurry. J Environ Qual 29:262–268. doi:10.2134/jeq2000.00472425002900010033x

    CAS  Article  Google Scholar 

  • Fließbach A, Oberholzer H-R, Gunst L, Mäder P (2007) Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agr Ecosyst Environ 118:273–284. doi:10.1016/j.agee.2006.05.022

    Article  Google Scholar 

  • Gadermaier F, Berner A, Fließbach A, Friedel JK, Mäder P (2012) Impact of reduced tillage on soil organic carbon and nutrient budgets under organic farming. Renewable Agric Food Syst 27:1–13. doi:10.1017/S1742170510000554

    Article  Google Scholar 

  • Graf DRH, Jones CM, Hallin S (2014) Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. Plos One 9:e114118. doi:10.1371/journal.pone.0114118

    Article  PubMed  PubMed Central  Google Scholar 

  • Heinze S, Rauber R, Joergensen RG (2010) Influence of mouldboard plough and rotary harrow tillage on microbial biomass and nutrient stocks in two long-term experiments on loess derived Luvisols. Appl Soil Ecol 46:405–412. doi:10.1016/j.apsoil.2010.09.011

    Article  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363

    Article  PubMed  Google Scholar 

  • Jacobs A, Rauber R, Ludwig B (2009) Impact of reduced tillage on carbon and nitrogen storage of two Haplic Luvisols after 40 years. Soil Tillage Res 102:158–164. doi:10.1016/j.still.2008.08.012

    Article  Google Scholar 

  • Jaeger N, Duffner A, Ludwig B, Flessa H (2013) Effect of fertilization history on short-term emission of CO2 and N2O after the application of different N fertilizers—a laboratory study. Arch Agron Soil Sci 59:161–171. doi:10.1080/03650340.2011.621420

    CAS  Article  Google Scholar 

  • Jones CM, Spor A, Brennan FP, Breuil M-C, Bru D, Lemanceau P, Griffiths B, Hallin S, Philippot L (2014) Recently identified microbial guild mediates soil N2O sink capacity. Nature Clim Change advance online publication doi:10.1038/nclimate2301

  • Kaurin A, Mihelič R, Kastelec D, Schloter M, Suhadolc M, Grčman H (2015) Consequences of minimum soil tillage on abiotic soil properties and composition of microbial communities in a shallow Cambisol originated from fluvioglacial deposits. Biol Fertil Soils 51:923–933. doi:10.1007/s00374-015-1037-9

    CAS  Article  Google Scholar 

  • Kool DM, Dolfing J, Wrage N, Van Groenigen JW (2011) Nitrifier denitrification as a distinct and significant source of nitrous oxide from soil. Soil Biol Biochem 43:174–178. doi:10.1016/j.soilbio.2010.09.030

    CAS  Article  Google Scholar 

  • Kuntz M, Berner A, Gattinger A, Scholberg JM, Mäder P, Pfiffner L (2013) Influence of reduced tillage on earthworm and microbial communities under organic arable farming. Pedobiologia 56:251–260. doi:10.1016/j.pedobi.2013.08.005

    Article  Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809. doi:10.1038/nature04983

    CAS  Article  PubMed  Google Scholar 

  • Li S, Jiang XJ, Wang XL, Wright AL (2015) Tillage effects on soil nitrification and the dynamic changes in nitrifying microorganisms in a subtropical rice-based ecosystem: a long-term field study. Soil Tillage Res 150:132–138. doi:10.1016/j.still.2015.02.005

    Article  Google Scholar 

  • Luo ZK, Wang EL, Sun OJ (2010) Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agr Ecosyst Environ 139:224–231. doi:10.1016/j.agee.2010.08.006

    CAS  Article  Google Scholar 

  • Marhan S, Philippot L, Bru D, Rudolph S, Franzaring J, Högy P, Fangmeier A, Kandeler E (2011) Abundance and activity of nitrate reducers in an arable soil are more affected by temporal variation and soil depth than by elevated atmospheric CO2. FEMS Microbiol Ecol 76:209–219. doi:10.1111/j.1574-6941.2011.01048.x

    CAS  Article  PubMed  Google Scholar 

  • Melero S, Perez-de-Mora A, Manuel Murillo J, Buegger F, Kleinedam K, Kublik S, Vanderlinden K, Moreno F, Schloter M (2011) Denitrification in a vertisol under long-term tillage and no-tillage management in dryland agricultural systems: key genes and potential rates. Appl Soil Ecol 47:221–225. doi:10.1016/j.apsoil.2010.12.003

    Article  Google Scholar 

  • Miller MN, Zebarth BJ, Dandie CE, Burton DL, Goyer C, Trevors JT (2009) Influence of liquid manure on soil denitrifier abundance, denitrification, and nitrous oxide emissions. Soil Sci Soc Am J 73:760–768. doi:10.2136/sssaj2008.0059

    CAS  Article  Google Scholar 

  • Montes F, Meinen R, Dell C, Rotz A, Hristov AN, Oh J, Waghorn G, Gerber PJ, Henderson B, Makkar HPS, Dijkstra J (2013) SPECIAL TOPICS—Mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options. J Anim Sci 91:5070–5094. doi:10.2527/jas.2013-6584

    CAS  Article  PubMed  Google Scholar 

  • Montzka SA, Dlugokencky EJ, Butler JH (2011) Non-CO2 greenhouse gases and climate change. Nature 476:43–50. doi:10.1038/nature10322

    CAS  Article  PubMed  Google Scholar 

  • Petersen SO, Schjonning P, Thomsen IK, Christensen BT (2008) Nitrous oxide evolution from structurally intact soil as influenced by tillage and soil water content. Soil Biol Biochem 40:967–977. doi:10.1016/j.soilbio.2007.11.017

    CAS  Article  Google Scholar 

  • Philippot L, Andert J, Jones CM, Bru D, Hallin S (2011) Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil. Glob Chang Biol 17:1497–1504. doi:10.1111/j.1365-2486.2010.02334.x

    Article  Google Scholar 

  • Pinheiro J., Bates D., DebRoy S., Sarkar D., R Core Team (2014) nlme: Linear and Nonlinear Mixed Effects Models, R package version 3.1-118 edn

  • Powlson DS, Stirling CM, Jat ML, Gerard BG, Palm CA, Sanchez PA, Cassman KG (2014) Limited potential of no-till agriculture for climate change mitigation. Nat Clim Chang 4:678–683. doi:10.1038/nclimate2292

    Article  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125. doi:10.1126/science.1176985

    CAS  Article  PubMed  Google Scholar 

  • Regan K, Kammann C, Hartung K, Lenhart K, Müller C, Philippot L, Kandeler E, Marhan S (2011) Can differences in microbial abundances help explain enhanced N2O emissions in a permanent grassland under elevated atmospheric CO2? Glob Chang Biol 17:3176–3186

    Article  Google Scholar 

  • Rocca JD, Hall EK, Lennon JT, Evans SE, Waldrop MP, Cotner JB, Nemergut DR, Graham EB, Wallenstein MD (2015) Relationships between protein-encoding gene abundance and corresponding process are commonly assumed yet rarely observed. ISME J 9:1693–1699. doi:10.1038/ismej.2014.252

    Article  PubMed  Google Scholar 

  • Rochette P (2008) No-till only increases N2O emissions in poorly-aerated soils. Soil Tillage Res 101:97–100. doi:10.1016/j.still.2008.07.011

    Article  Google Scholar 

  • Senbayram M, Chen R, Budai A, Bakken L, Dittert K (2012) N2O emission and the N2O/(N2O + N2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations. Agr Ecosyst Environ 147:4–12. doi:10.1016/j.agee.2011.06.022

    CAS  Article  Google Scholar 

  • Six J, Ogle SM, Jay Breidt F, Conant RT, Mosier AR, Paustian K (2004) The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Glob Chang Biol 10:155–160. doi:10.1111/j.1529-8817.2003.00730.x

    Article  Google Scholar 

  • Syakila A, Kroeze C (2011) The global nitrous oxide budget revisited. Greenhouse Gas Meas Manage 1:17–26. doi:10.3763/ghgmm.2010.0007

    CAS  Article  Google Scholar 

  • Tatti E, Goyer C, Zebarth BJ, Burton DL, Giovannetti L, Viti C (2013) Short-term effects of mineral and organic fertilizer on denitrifiers, nitrous oxide emissions and denitrification in long-term amended vineyard soils. Soil Sci Soc Am J 77:113–122. doi:10.2136/sssaj2012.0096

    CAS  Article  Google Scholar 

  • Taylor AE, Zeglin LH, Wanzek TA, Myrold DD, Bottomley PJ (2012) Dynamics of ammonia-oxidizing archaea and bacteria populations and contributions to soil nitrification potentials. ISME J 6:2024–2032. doi:10.1038/ismej.2012.51

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Tellez-Rio A, Garcia-Marco S, Navas M, Lopez-Solanilla E, Rees RM, Luis Tenorio J, Vallejo A (2015) Nitrous oxide and methane emissions from a vetch cropping season are changed by long-term tillage practices in a Mediterranean agroecosystem. Biol Fertil Soils 51:77–88. doi:10.1007/s00374-014-0952-5

    CAS  Article  Google Scholar 

  • van Capelle C, Schrader S, Brunotte J (2012) Tillage-induced changes in the functional diversity of soil biota—a review with a focus on German data. Eur J Soil Biol 50:165–181. doi:10.1016/j.ejsobi.2012.02.005

    Article  Google Scholar 

  • van Groenigen JW, Kasper GJ, Velthof GL, van den Pol-van Dasselaar A, Kuikman PJ (2004) Nitrous oxide emissions from silage maize fields under different mineral nitrogen fertilizer and slurry applications. Plant Soil 263:101–111. doi:10.1023/B:PLSO.0000047729.43185.46

    Article  Google Scholar 

  • van Kessel C, Venterea R, Six J, Adviento-Borbe MA, Linquist B, van Groenigen KJ (2013) Climate, duration, and N placement determine N2O emissions in reduced tillage systems: a meta-analysis. Glob Chang Biol 19:33–44. doi:10.1111/j.1365-2486.2012.02779.x

    Article  PubMed  Google Scholar 

  • Velthof GL, Kuikman PJ, Oenema O (2003) Nitrous oxide emission from animal manures applied to soil under controlled conditions. Biol Fertil Soils 37:221–230. doi:10.1007/s00374-003-0589-2

    CAS  Google Scholar 

  • Venterea RT, Halvorson AD, Kitchen N, Liebig MA, Cavigelli MA, Del Grosso SJ, Motavalli PP, Nelson KA, Spokas KA, Singh BP, Stewart CE, Ranaivoson A, Strock J, Collins H (2012) Challenges and opportunities for mitigating nitrous oxide emissions from fertilized cropping systems. Front Ecol Environ 10:562–570. doi:10.1890/120062

    Article  Google Scholar 

  • Vogel C, Mueller CW, Höschen C, Buegger F, Heister K, Schulz S, Schloter M, Kögel-Knabner I (2014) Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils. Nat Commun 5:2947. doi:10.1038/ncomms3947

    Article  PubMed  PubMed Central  Google Scholar 

  • von Luetzow M, Koegel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57:426–445. doi:10.1111/j.1365-2389.2006.00809.x

    CAS  Article  Google Scholar 

  • Wallenstein MD, Myrold DD, Firestone M, Voytek M (2006) Environmental controls on denitrifying communities and denitrification rates: insights from molecular methods. Ecol Appl 16:2143–2152. doi:10.1890/1051-0761(2006)016[2143:ECODCA]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Wei W, Isobe K, Nishizawa T, Zhu L, Shiratori Y, Ohte N, Koba K, Otsuka S, Senoo K (2015) Higher diversity and abundance of denitrifying microorganisms in environments than considered previously. ISME J 9:1954–1965. doi:10.1038/ismej.2015.9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Wiesmeier M, Schad P, von Lutzow M, Poeplau C, Sporlein P, Geuss U, Hangen E, Reischl A, Schilling B, Kogel-Knabner I (2014) Quantification of functional soil organic carbon pools for major soil units and land uses in southeast Germany (Bavaria). Agr Ecosyst Environ 185:208–220. doi:10.1016/j.agee.2013.12.028

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We kindly thank our laboratory technicians Anton Kuhn and Adolphe Munyangabe for assistance. For external laboratory analysis, we acknowledge Hans Ruedi Oberholzer and his co-workers from Agroscope Reckenholz. We gratefully acknowledge the financial support for this project provided by the COOP Sustainability Fund and the CORE Organic II funding bodies, being partners of the FP7 ERA-Net project TILMAN-ORG (www.coreorganic2.org). We also thank for the financial support of the Swiss National Science Foundation in frame of the National Research Program “Soil as a Resource” (NRP 68). We thank the Swiss Federal Office for the Environment for financing the gas chromatograph and the Software AG-Stiftung, Stiftung zur Pflege von Mensch, Mitwelt und Erde and Swiss Federal Office for Agriculture for financing the Frick tillage trial. We thank Simon Moakes for his help with English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Martin Krause.

Additional information

Maike Krauss and Hans-Martin Krause contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement Fig S1

Gene copy numbers of the general bacterial gene marker 16S rRNA and the functional genes amoA (bacterial and archaeal), nirK, nirS, and nosZ during the first week of incubation of soil samples from conventional tillage (CT) and reduced tillage (RT) systems and two soil depths (0–10, 10–20 cm). Panel (a) shows gene copy numbers before incubation. Panels (b)–(e) show gene copy numbers after application of demineralized water (ZERO), calcium ammonium nitrate (CAN), manure compost (MC), and slurry (SL). Error bars show the standard error of the mean of each treatment (n = 3) (JPG 638 kb)

High resolution image (EPS 1970 kb)

ESM 2

(DOCX 55 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krauss, M., Krause, HM., Spangler, S. et al. Tillage system affects fertilizer-induced nitrous oxide emissions. Biol Fertil Soils 53, 49–59 (2017). https://doi.org/10.1007/s00374-016-1152-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-016-1152-2

Keywords

  • Nitrous oxide
  • Nitrification
  • Denitrification
  • Fertilization
  • Reduced tillage
  • Soil organic carbon